Remote sensing image classification method based on improved ShuffleNet convolutional neural network

卷积神经网络 计算机科学 人工智能 遥感 模式识别(心理学) 上下文图像分类 人工神经网络 计算机视觉 图像(数学) 地质学
作者
Ziqi Li,Yuxuan Su,Yonghong Zhang,He-Feng Yin,Jun Sun,Xiao-Jun Wu
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:28 (2): 397-414
标识
DOI:10.3233/ida-227217
摘要

As a list of remotely sensed data sources is available, the effective processing of remote sensing images is of great significance in practical applications in various fields. This paper proposes a new lightweight network to solve the problem of remote sensing image processing by using the method of deep learning. Specifically, the proposed model employs ShuffleNet V2 as the backbone network, appropriately increases part of the convolution kernels to improve the classification accuracy of the network, and uses the maximum overlapping pooling layer to enhance the detailed features of the input images. Finally, Squeeze and Excitation (SE) blocks are introduced as the attention mechanism to improve the architecture of the network. Experimental results based on several multisource data show that our proposed network model has a good classification effect on the test samples and can achieve more excellent classification performance than some existing methods, with an accuracy of 91%, and can be used for the classification of remote sensing images. Our model not only has high accuracy but also has faster training speed compared with large networks and can greatly reduce computation costs. The demo code of our proposed method will be available at https://github.com/li-zi-qi.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水水水完成签到,获得积分10
刚刚
谢慧蕴发布了新的文献求助10
1秒前
爆米花应助加油采纳,获得10
2秒前
烂想家关注了科研通微信公众号
3秒前
binglangcha发布了新的文献求助10
5秒前
Serein完成签到,获得积分10
6秒前
6秒前
爆米花应助赵大虾采纳,获得10
9秒前
9秒前
汉堡包应助欧气青年采纳,获得10
10秒前
111发布了新的文献求助10
11秒前
陈彦滨完成签到 ,获得积分10
11秒前
烂想家发布了新的文献求助10
12秒前
12秒前
明理楷瑞发布了新的文献求助10
12秒前
小蘑菇应助任伟超采纳,获得10
13秒前
Ann完成签到,获得积分10
15秒前
李寒之完成签到 ,获得积分10
16秒前
同尘完成签到,获得积分10
17秒前
17秒前
cuicui发布了新的文献求助10
17秒前
17秒前
明理的曼凡应助111采纳,获得10
17秒前
water应助111采纳,获得10
17秒前
Jasper应助111采纳,获得10
17秒前
11完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
23秒前
23秒前
研友_Zrlk7L发布了新的文献求助10
24秒前
24秒前
24秒前
Thea完成签到,获得积分10
25秒前
田様应助明理楷瑞采纳,获得10
25秒前
Vincent发布了新的文献求助10
25秒前
26秒前
归尘应助cuicui采纳,获得10
26秒前
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993820
求助须知:如何正确求助?哪些是违规求助? 3534462
关于积分的说明 11265617
捐赠科研通 3274313
什么是DOI,文献DOI怎么找? 1806345
邀请新用户注册赠送积分活动 883137
科研通“疑难数据库(出版商)”最低求助积分说明 809712