Technical note: Generalizable and promptable artificial intelligence model to augment clinical delineation in radiation oncology

分割 雅卡索引 掷骰子 医学物理学 放射治疗计划 深度学习 放射治疗 概化理论 医学 计算机视觉 人工智能 计算机科学 模式识别(心理学) 核医学 放射科 数学 统计 几何学
作者
Lian Zhang,Zhengliang Liu,Lu Zhang,Zihao Wu,Xiaowei Yu,Jason Holmes,Hongying Feng,Haixing Dai,Xiang Li,Quanzheng Li,William W. Wong,Sujay A. Vora,Dajiang Zhu,Tianming Liu,Wei Liu
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 2187-2199 被引量:2
标识
DOI:10.1002/mp.16965
摘要

Abstract Background Efficient and accurate delineation of organs at risk (OARs) is a critical procedure for treatment planning and dose evaluation. Deep learning‐based auto‐segmentation of OARs has shown promising results and is increasingly being used in radiation therapy. However, existing deep learning‐based auto‐segmentation approaches face two challenges in clinical practice: generalizability and human‐AI interaction. A generalizable and promptable auto‐segmentation model, which segments OARs of multiple disease sites simultaneously and supports on‐the‐fly human‐AI interaction, can significantly enhance the efficiency of radiation therapy treatment planning. Purpose Meta's segment anything model (SAM) was proposed as a generalizable and promptable model for next‐generation natural image segmentation. We further evaluated the performance of SAM in radiotherapy segmentation. Methods Computed tomography (CT) images of clinical cases from four disease sites at our institute were collected: prostate, lung, gastrointestinal, and head & neck. For each case, we selected the OARs important in radiotherapy treatment planning. We then compared both the Dice coefficients and Jaccard indices derived from three distinct methods: manual delineation (ground truth), automatic segmentation using SAM's ’segment anything’ mode, and automatic segmentation using SAM's ‘box prompt’ mode that implements manual interaction via live prompts during segmentation. Results Our results indicate that SAM's segment anything mode can achieve clinically acceptable segmentation results in most OARs with Dice scores higher than 0.7. SAM's box prompt mode further improves Dice scores by 0.1∼0.5. Similar results were observed for Jaccard indices. The results show that SAM performs better for prostate and lung, but worse for gastrointestinal and head & neck. When considering the size of organs and the distinctiveness of their boundaries, SAM shows better performance for large organs with distinct boundaries, such as lung and liver, and worse for smaller organs with less distinct boundaries, like parotid and cochlea. Conclusions Our results demonstrate SAM's robust generalizability with consistent accuracy in automatic segmentation for radiotherapy. Furthermore, the advanced box‐prompt method enables the users to augment auto‐segmentation interactively and dynamically, leading to patient‐specific auto‐segmentation in radiation therapy. SAM's generalizability across different disease sites and different modalities makes it feasible to develop a generic auto‐segmentation model in radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鹿静枫发布了新的文献求助10
刚刚
雨齐完成签到,获得积分10
刚刚
开心榴莲大王完成签到 ,获得积分10
刚刚
武雨寒发布了新的文献求助10
刚刚
整齐的问凝完成签到,获得积分20
1秒前
从容芮应助llg采纳,获得10
2秒前
soar发布了新的文献求助10
2秒前
万松辉完成签到,获得积分20
3秒前
zengxi246发布了新的文献求助10
4秒前
4秒前
大气水池完成签到,获得积分10
4秒前
帅气的宽完成签到 ,获得积分10
5秒前
科研通AI2S应助28551采纳,获得10
5秒前
陈冲发布了新的文献求助10
5秒前
5秒前
Elian发布了新的文献求助10
5秒前
6秒前
6秒前
chenaio完成签到,获得积分10
7秒前
木子李完成签到,获得积分10
7秒前
azhu关注了科研通微信公众号
8秒前
9秒前
9秒前
FashionBoy应助七七采纳,获得10
10秒前
被动科研应助七七采纳,获得10
10秒前
10秒前
pluto应助鹿静枫采纳,获得10
11秒前
平常以丹发布了新的文献求助10
11秒前
Jasper应助yamo采纳,获得10
12秒前
12秒前
13秒前
13秒前
68完成签到,获得积分10
13秒前
完美世界应助陈冲采纳,获得10
13秒前
wanci应助酷炫的不悔采纳,获得10
13秒前
CipherSage应助福西西采纳,获得10
13秒前
14秒前
ZH发布了新的文献求助10
14秒前
齐泽克发布了新的文献求助10
14秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3079267
求助须知:如何正确求助?哪些是违规求助? 2731896
关于积分的说明 7521337
捐赠科研通 2380638
什么是DOI,文献DOI怎么找? 1262413
科研通“疑难数据库(出版商)”最低求助积分说明 611928
版权声明 597414