Technical note: Generalizable and promptable artificial intelligence model to augment clinical delineation in radiation oncology

分割 雅卡索引 掷骰子 医学物理学 放射治疗计划 深度学习 放射治疗 概化理论 医学 计算机视觉 人工智能 计算机科学 模式识别(心理学) 核医学 放射科 数学 统计 几何学
作者
Lian Zhang,Zhengliang Liu,Lu Zhang,Zihao Wu,Xiaowei Yu,Jason Holmes,Hongying Feng,Haixing Dai,Xiang Li,Quanzheng Li,William W. Wong,Sujay A. Vora,Dajiang Zhu,Tianming Liu,Wei Liu
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 2187-2199 被引量:4
标识
DOI:10.1002/mp.16965
摘要

Abstract Background Efficient and accurate delineation of organs at risk (OARs) is a critical procedure for treatment planning and dose evaluation. Deep learning‐based auto‐segmentation of OARs has shown promising results and is increasingly being used in radiation therapy. However, existing deep learning‐based auto‐segmentation approaches face two challenges in clinical practice: generalizability and human‐AI interaction. A generalizable and promptable auto‐segmentation model, which segments OARs of multiple disease sites simultaneously and supports on‐the‐fly human‐AI interaction, can significantly enhance the efficiency of radiation therapy treatment planning. Purpose Meta's segment anything model (SAM) was proposed as a generalizable and promptable model for next‐generation natural image segmentation. We further evaluated the performance of SAM in radiotherapy segmentation. Methods Computed tomography (CT) images of clinical cases from four disease sites at our institute were collected: prostate, lung, gastrointestinal, and head & neck. For each case, we selected the OARs important in radiotherapy treatment planning. We then compared both the Dice coefficients and Jaccard indices derived from three distinct methods: manual delineation (ground truth), automatic segmentation using SAM's ’segment anything’ mode, and automatic segmentation using SAM's ‘box prompt’ mode that implements manual interaction via live prompts during segmentation. Results Our results indicate that SAM's segment anything mode can achieve clinically acceptable segmentation results in most OARs with Dice scores higher than 0.7. SAM's box prompt mode further improves Dice scores by 0.1∼0.5. Similar results were observed for Jaccard indices. The results show that SAM performs better for prostate and lung, but worse for gastrointestinal and head & neck. When considering the size of organs and the distinctiveness of their boundaries, SAM shows better performance for large organs with distinct boundaries, such as lung and liver, and worse for smaller organs with less distinct boundaries, like parotid and cochlea. Conclusions Our results demonstrate SAM's robust generalizability with consistent accuracy in automatic segmentation for radiotherapy. Furthermore, the advanced box‐prompt method enables the users to augment auto‐segmentation interactively and dynamically, leading to patient‐specific auto‐segmentation in radiation therapy. SAM's generalizability across different disease sites and different modalities makes it feasible to develop a generic auto‐segmentation model in radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助zym999999采纳,获得10
1秒前
逃亡的小狗完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
6秒前
淡然丹秋发布了新的文献求助10
7秒前
8秒前
SciGPT应助张成协采纳,获得10
9秒前
9秒前
liyang999完成签到 ,获得积分10
10秒前
11秒前
Ava应助简单的发夹采纳,获得10
12秒前
12秒前
充电宝应助细心的凡桃采纳,获得10
12秒前
13秒前
14秒前
研友_LBaRl8完成签到,获得积分10
14秒前
半夏完成签到,获得积分10
14秒前
酷酷朋友发布了新的文献求助10
15秒前
大胆的忆安完成签到 ,获得积分10
16秒前
所所应助wwmmyy采纳,获得10
18秒前
18秒前
18秒前
19秒前
19秒前
20秒前
FashionBoy应助ivying0209采纳,获得10
20秒前
Song0558发布了新的文献求助10
21秒前
阳光he完成签到,获得积分10
23秒前
橙子完成签到,获得积分20
23秒前
25秒前
樱悼柳雪给樱悼柳雪的求助进行了留言
25秒前
李钧鹏发布了新的文献求助10
26秒前
张成协发布了新的文献求助10
26秒前
橙子发布了新的文献求助10
28秒前
29秒前
hululu完成签到 ,获得积分10
29秒前
酷酷朋友完成签到,获得积分10
30秒前
wwmmyy发布了新的文献求助10
31秒前
35秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511