Technical note: Generalizable and promptable artificial intelligence model to augment clinical delineation in radiation oncology

分割 雅卡索引 掷骰子 医学物理学 放射治疗计划 深度学习 放射治疗 概化理论 医学 计算机视觉 人工智能 计算机科学 模式识别(心理学) 核医学 放射科 数学 统计 几何学
作者
Lian Zhang,Zhengliang Liu,Lu Zhang,Zihao Wu,Xiaowei Yu,Jason Holmes,Hongying Feng,Haixing Dai,Xiang Li,Quanzheng Li,William W. Wong,Sujay A. Vora,Dajiang Zhu,Tianming Liu,Wei Liu
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 2187-2199 被引量:4
标识
DOI:10.1002/mp.16965
摘要

Abstract Background Efficient and accurate delineation of organs at risk (OARs) is a critical procedure for treatment planning and dose evaluation. Deep learning‐based auto‐segmentation of OARs has shown promising results and is increasingly being used in radiation therapy. However, existing deep learning‐based auto‐segmentation approaches face two challenges in clinical practice: generalizability and human‐AI interaction. A generalizable and promptable auto‐segmentation model, which segments OARs of multiple disease sites simultaneously and supports on‐the‐fly human‐AI interaction, can significantly enhance the efficiency of radiation therapy treatment planning. Purpose Meta's segment anything model (SAM) was proposed as a generalizable and promptable model for next‐generation natural image segmentation. We further evaluated the performance of SAM in radiotherapy segmentation. Methods Computed tomography (CT) images of clinical cases from four disease sites at our institute were collected: prostate, lung, gastrointestinal, and head & neck. For each case, we selected the OARs important in radiotherapy treatment planning. We then compared both the Dice coefficients and Jaccard indices derived from three distinct methods: manual delineation (ground truth), automatic segmentation using SAM's ’segment anything’ mode, and automatic segmentation using SAM's ‘box prompt’ mode that implements manual interaction via live prompts during segmentation. Results Our results indicate that SAM's segment anything mode can achieve clinically acceptable segmentation results in most OARs with Dice scores higher than 0.7. SAM's box prompt mode further improves Dice scores by 0.1∼0.5. Similar results were observed for Jaccard indices. The results show that SAM performs better for prostate and lung, but worse for gastrointestinal and head & neck. When considering the size of organs and the distinctiveness of their boundaries, SAM shows better performance for large organs with distinct boundaries, such as lung and liver, and worse for smaller organs with less distinct boundaries, like parotid and cochlea. Conclusions Our results demonstrate SAM's robust generalizability with consistent accuracy in automatic segmentation for radiotherapy. Furthermore, the advanced box‐prompt method enables the users to augment auto‐segmentation interactively and dynamically, leading to patient‐specific auto‐segmentation in radiation therapy. SAM's generalizability across different disease sites and different modalities makes it feasible to develop a generic auto‐segmentation model in radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓杰元关注了科研通微信公众号
1秒前
2秒前
3秒前
4秒前
SYLH应助文章发的多多的采纳,获得10
6秒前
汉堡包应助老阳采纳,获得10
8秒前
9秒前
飞飞鱼发布了新的文献求助10
9秒前
拼搏的飞薇完成签到,获得积分10
11秒前
11秒前
11秒前
13秒前
15秒前
17秒前
悦耳黑猫发布了新的文献求助10
19秒前
Tingting完成签到 ,获得积分10
19秒前
20秒前
老阳发布了新的文献求助10
20秒前
21秒前
深情安青应助l98916采纳,获得10
21秒前
22秒前
zimo完成签到,获得积分10
23秒前
23秒前
清新的苑博完成签到,获得积分10
23秒前
lsy发布了新的文献求助10
25秒前
魏晓林完成签到,获得积分10
25秒前
bee发布了新的文献求助10
27秒前
ztt发布了新的文献求助10
28秒前
29秒前
文章发的多多的完成签到,获得积分20
29秒前
打打应助whl采纳,获得10
30秒前
fineglue完成签到,获得积分10
30秒前
32秒前
清新完成签到,获得积分10
33秒前
邓杰元发布了新的文献求助50
33秒前
无辜洋葱发布了新的文献求助10
33秒前
传奇3应助舒服的秋荷采纳,获得10
33秒前
Akim应助天天娃哈哈采纳,获得10
33秒前
顾矜应助悦耳黑猫采纳,获得10
34秒前
35秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738649
求助须知:如何正确求助?哪些是违规求助? 3282012
关于积分的说明 10027267
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645497
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975