亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Technical note: Generalizable and promptable artificial intelligence model to augment clinical delineation in radiation oncology

分割 雅卡索引 掷骰子 医学物理学 放射治疗计划 深度学习 放射治疗 概化理论 医学 计算机视觉 人工智能 计算机科学 模式识别(心理学) 核医学 放射科 数学 统计 几何学
作者
Lian Zhang,Zhengliang Liu,Lu Zhang,Zihao Wu,Xiaowei Yu,Jason Holmes,Hongying Feng,Haixing Dai,Xiang Li,Quanzheng Li,William W. Wong,Sujay A. Vora,Dajiang Zhu,Tianming Liu,Wei Liu
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 2187-2199 被引量:4
标识
DOI:10.1002/mp.16965
摘要

Abstract Background Efficient and accurate delineation of organs at risk (OARs) is a critical procedure for treatment planning and dose evaluation. Deep learning‐based auto‐segmentation of OARs has shown promising results and is increasingly being used in radiation therapy. However, existing deep learning‐based auto‐segmentation approaches face two challenges in clinical practice: generalizability and human‐AI interaction. A generalizable and promptable auto‐segmentation model, which segments OARs of multiple disease sites simultaneously and supports on‐the‐fly human‐AI interaction, can significantly enhance the efficiency of radiation therapy treatment planning. Purpose Meta's segment anything model (SAM) was proposed as a generalizable and promptable model for next‐generation natural image segmentation. We further evaluated the performance of SAM in radiotherapy segmentation. Methods Computed tomography (CT) images of clinical cases from four disease sites at our institute were collected: prostate, lung, gastrointestinal, and head & neck. For each case, we selected the OARs important in radiotherapy treatment planning. We then compared both the Dice coefficients and Jaccard indices derived from three distinct methods: manual delineation (ground truth), automatic segmentation using SAM's ’segment anything’ mode, and automatic segmentation using SAM's ‘box prompt’ mode that implements manual interaction via live prompts during segmentation. Results Our results indicate that SAM's segment anything mode can achieve clinically acceptable segmentation results in most OARs with Dice scores higher than 0.7. SAM's box prompt mode further improves Dice scores by 0.1∼0.5. Similar results were observed for Jaccard indices. The results show that SAM performs better for prostate and lung, but worse for gastrointestinal and head & neck. When considering the size of organs and the distinctiveness of their boundaries, SAM shows better performance for large organs with distinct boundaries, such as lung and liver, and worse for smaller organs with less distinct boundaries, like parotid and cochlea. Conclusions Our results demonstrate SAM's robust generalizability with consistent accuracy in automatic segmentation for radiotherapy. Furthermore, the advanced box‐prompt method enables the users to augment auto‐segmentation interactively and dynamically, leading to patient‐specific auto‐segmentation in radiation therapy. SAM's generalizability across different disease sites and different modalities makes it feasible to develop a generic auto‐segmentation model in radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
自觉曼岚完成签到,获得积分20
9秒前
大个应助自觉曼岚采纳,获得10
14秒前
16秒前
丝垚完成签到 ,获得积分10
16秒前
sola发布了新的文献求助10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
NING发布了新的文献求助30
22秒前
毛毛发布了新的文献求助20
22秒前
24秒前
小七完成签到,获得积分10
25秒前
上官若男应助Ni采纳,获得10
26秒前
托丽莲睡拿完成签到,获得积分10
30秒前
寻道图强应助defvfv采纳,获得50
31秒前
33秒前
36秒前
自觉曼岚发布了新的文献求助10
40秒前
KoitoYuu发布了新的文献求助10
42秒前
46秒前
哭泣的丝发布了新的文献求助10
46秒前
义气幼珊完成签到 ,获得积分10
50秒前
Jasper应助月光采纳,获得10
55秒前
59秒前
KoitoYuu完成签到,获得积分10
1分钟前
1分钟前
莓烦恼完成签到 ,获得积分10
1分钟前
1分钟前
结实的夜白完成签到,获得积分10
1分钟前
Leah完成签到 ,获得积分10
1分钟前
Limbay168发布了新的文献求助30
1分钟前
1分钟前
科研菜狗完成签到 ,获得积分10
1分钟前
HC完成签到,获得积分10
1分钟前
木子倪完成签到,获得积分10
1分钟前
FERN0826完成签到 ,获得积分10
1分钟前
勤恳的书文完成签到 ,获得积分10
1分钟前
饱满语风完成签到 ,获得积分10
1分钟前
柠檬完成签到,获得积分10
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241752
求助须知:如何正确求助?哪些是违规求助? 2886258
关于积分的说明 8242412
捐赠科研通 2554772
什么是DOI,文献DOI怎么找? 1382907
科研通“疑难数据库(出版商)”最低求助积分说明 649622
邀请新用户注册赠送积分活动 625346