Towards clinically applicable automated mandibular canal segmentation on CBCT

分割 计算机科学 人工智能 牙科 医学 口腔正畸科
作者
Fang-Duan Ni,Zineng Xu,Mu-Qing Liu,Min‐Juan Zhang,Shu Li,Hailong Bai,Peng Ding,Kai‐Yuan Fu
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:144: 104931-104931 被引量:4
标识
DOI:10.1016/j.jdent.2024.104931
摘要

To develop a deep learning-based system for precise, robust, and fully automated segmentation of the mandibular canal on cone beam computed tomography (CBCT) images. The system was developed on 536 CBCT scans (training set: 376, validation set: 80, testing set: 80) from one center and validated on an external dataset of 89 CBCT scans from 3 centers. Each scan was annotated using a multi-stage annotation method and refined by oral and maxillofacial radiologists. We proposed a three-step strategy for the mandibular canal segmentation: extraction of the region of interest based on 2D U-Net, global segmentation of the mandibular canal, and segmentation refinement based on 3D U-Net. The system consistently achieved accurate mandibular canal segmentation in the internal set (Dice similarity coefficient [DSC], 0.952; intersection over union [IoU], 0.912; average symmetric surface distance [ASSD], 0.046 mm; 95% Hausdorff distance [HD95], 0.325 mm) and the external set (DSC, 0.960; IoU, 0.924; ASSD, 0.040 mm; HD95, 0.288 mm). These results demonstrated the potential clinical application of this AI system in facilitating clinical workflows related to mandibular canal localization. Accurate delineation of the mandibular canal on CBCT images is critical for implant placement, mandibular third molar extraction, and orthognathic surgery. This AI system enables accurate segmentation across different models, which could contribute to more efficient and precise dental automation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
oyc完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
YLY发布了新的文献求助30
3秒前
丁丽发布了新的文献求助10
3秒前
燕子归来完成签到,获得积分10
3秒前
明眸完成签到,获得积分10
4秒前
自然1111发布了新的文献求助10
5秒前
5秒前
6秒前
罗永昊发布了新的文献求助10
6秒前
袁气小笼包完成签到,获得积分10
7秒前
7秒前
CC完成签到,获得积分10
7秒前
bkagyin应助刘梦婷采纳,获得10
8秒前
8秒前
方圆几里发布了新的文献求助30
8秒前
CodeCraft应助Yulin Yu采纳,获得10
8秒前
Matthewwt完成签到,获得积分10
8秒前
wanci应助冷艳招牌采纳,获得10
8秒前
公孙朝雨完成签到 ,获得积分10
8秒前
kirito发布了新的文献求助10
8秒前
乐哉完成签到,获得积分10
9秒前
正直无极发布了新的文献求助10
9秒前
狂野忆文完成签到,获得积分10
9秒前
10秒前
1243437374完成签到,获得积分10
10秒前
全糖完成签到,获得积分10
11秒前
11秒前
情怀应助THEEVE采纳,获得10
11秒前
zsyf完成签到,获得积分10
12秒前
12秒前
ding应助丁丽采纳,获得10
12秒前
13秒前
畅快成风发布了新的文献求助10
13秒前
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186