Towards clinically applicable automated mandibular canal segmentation on CBCT

分割 计算机科学 人工智能 牙科 医学 口腔正畸科
作者
Fang-Duan Ni,Zineng Xu,Mu-Qing Liu,Min‐Juan Zhang,Shu Li,Hailong Bai,Peng Ding,Kai‐Yuan Fu
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:144: 104931-104931 被引量:4
标识
DOI:10.1016/j.jdent.2024.104931
摘要

To develop a deep learning-based system for precise, robust, and fully automated segmentation of the mandibular canal on cone beam computed tomography (CBCT) images. The system was developed on 536 CBCT scans (training set: 376, validation set: 80, testing set: 80) from one center and validated on an external dataset of 89 CBCT scans from 3 centers. Each scan was annotated using a multi-stage annotation method and refined by oral and maxillofacial radiologists. We proposed a three-step strategy for the mandibular canal segmentation: extraction of the region of interest based on 2D U-Net, global segmentation of the mandibular canal, and segmentation refinement based on 3D U-Net. The system consistently achieved accurate mandibular canal segmentation in the internal set (Dice similarity coefficient [DSC], 0.952; intersection over union [IoU], 0.912; average symmetric surface distance [ASSD], 0.046 mm; 95% Hausdorff distance [HD95], 0.325 mm) and the external set (DSC, 0.960; IoU, 0.924; ASSD, 0.040 mm; HD95, 0.288 mm). These results demonstrated the potential clinical application of this AI system in facilitating clinical workflows related to mandibular canal localization. Accurate delineation of the mandibular canal on CBCT images is critical for implant placement, mandibular third molar extraction, and orthognathic surgery. This AI system enables accurate segmentation across different models, which could contribute to more efficient and precise dental automation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助Aliya采纳,获得10
1秒前
3秒前
飞飞飞发布了新的文献求助10
3秒前
脑洞疼应助小付采纳,获得10
4秒前
wanci应助梁平采纳,获得10
5秒前
丘比特应助亚亚采纳,获得10
5秒前
GuGuGaGaAH发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
迷你的乌冬面完成签到,获得积分10
8秒前
小蘑菇应助xiaopeilin1982采纳,获得10
9秒前
hiswen完成签到,获得积分10
10秒前
老福贵儿应助heiyeshizhe采纳,获得10
10秒前
12秒前
12秒前
遇123发布了新的文献求助10
12秒前
16秒前
haby发布了新的文献求助10
17秒前
17秒前
Dotuu发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
刘荣鑫完成签到,获得积分10
18秒前
19秒前
19秒前
kafm发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
无问完成签到,获得积分10
22秒前
赘婿应助小四喜采纳,获得10
23秒前
小柠完成签到,获得积分10
24秒前
long4jun3发布了新的文献求助10
24秒前
勤恳的嚓茶完成签到,获得积分10
24秒前
25秒前
manny发布了新的文献求助10
25秒前
25秒前
自觉的草莓完成签到 ,获得积分10
26秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5383371
求助须知:如何正确求助?哪些是违规求助? 4506321
关于积分的说明 14024212
捐赠科研通 4416030
什么是DOI,文献DOI怎么找? 2425898
邀请新用户注册赠送积分活动 1418538
关于科研通互助平台的介绍 1396822