Fault diagnosis of gearbox driven by vibration response mechanism and enhanced unsupervised domain adaptation

机制(生物学) 振动 断层(地质) 模式识别(心理学) 领域(数学分析) 计算机科学 功能(生物学) 人工智能 质量(理念) 人工神经网络 数据挖掘 数学 地质学 物理 地震学 哲学 认识论 数学分析 进化生物学 量子力学 生物
作者
Fei Jiang,Weiqi Lin,Zhaoqian Wu,Shaohui Zhang,Zhuyun Chen,Weihua Li
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:61: 102460-102460 被引量:18
标识
DOI:10.1016/j.aei.2024.102460
摘要

Although data-driven model has achieved remarkable results in gearbox fault diagnosis, its diagnostic accuracy is still highly dependent on large amounts of high-quality labeled samples. Some data generation methods, such as generative adversarial network, are utilized to address this problem. However, the generated simulation samples not only lack fault mechanism features with clear physical meaning, but also have distribution differences with the real samples. Aiming at the above problems, an enhanced unsupervised domain adaption method combined with vibration response mechanism is proposed for gearbox fault diagnosis. Firstly, various fault types of labeled simulation signals with clear physical meaning are generated based on vibration response mechanism of gearbox, alleviating the lack of large amounts of high-quality labeled samples for data-driven models. Secondly, to narrow the inevitable domain discrepancy between simulation samples and experimental samples, a domain mapping method is raised to both transform their distributions to normal distribution by optimizing an alignment function, which also could effectively improve the diagnostic speed and accuracy of intelligent models. Finally, the mapped samples are directly fed into an arbitrary unsupervised domain adaptation model to achieve fault diagnosis in the absence of any label information of measured samples. Importantly, the proposed domain mapping method can be simply appended to any existing core network to enhance diagnostic accuracy without necessitating modifications to its structure or training procedure. Experiments on two gearbox datasets suggest that the proposed method can effectively boost the performance of diagnosis issues with only a small number of experimental samples and outperform existing diagnosis approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渣渣完成签到 ,获得积分10
刚刚
跳跃保温杯完成签到,获得积分20
刚刚
popcorn完成签到,获得积分10
2秒前
Xx丶完成签到,获得积分10
2秒前
sci来来来发布了新的文献求助10
2秒前
北栀发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
林夕完成签到,获得积分10
4秒前
yyyyyge发布了新的文献求助10
4秒前
Orange应助Kikua采纳,获得30
4秒前
华仔应助scxl2000采纳,获得10
4秒前
5秒前
自信的德天完成签到,获得积分10
5秒前
迷你的唇彩完成签到,获得积分20
5秒前
tramp应助林夕采纳,获得10
8秒前
grmqgq发布了新的文献求助10
9秒前
BESTZJ完成签到,获得积分10
9秒前
Joan_89给Joan_89的求助进行了留言
9秒前
情怀应助顺心幻波采纳,获得10
9秒前
9秒前
9秒前
海英完成签到,获得积分10
10秒前
10秒前
yang完成签到,获得积分10
10秒前
百腻权完成签到,获得积分20
10秒前
向雨竹发布了新的文献求助10
11秒前
11秒前
11秒前
酷波er应助迷你的唇彩采纳,获得10
12秒前
自然风完成签到 ,获得积分10
12秒前
老王发布了新的文献求助10
12秒前
阿佳发布了新的文献求助20
13秒前
顾矜应助大橙子采纳,获得10
14秒前
14秒前
百腻权发布了新的文献求助20
14秒前
不学无术完成签到,获得积分20
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993