Fault diagnosis of gearbox driven by vibration response mechanism and enhanced unsupervised domain adaptation

机制(生物学) 振动 域适应 断层(地质) 适应(眼睛) 领域(数学分析) 计算机科学 人工智能 工程类 控制工程 控制理论(社会学) 心理学 声学 数学 神经科学 地质学 物理 地震学 数学分析 分类器(UML) 量子力学 控制(管理)
作者
Fengrui Jiang,Weiqi Lin,Zhaoqian Wu,Shaohui Zhang,Zhuyun Chen,Weihua Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:61: 102460-102460 被引量:4
标识
DOI:10.1016/j.aei.2024.102460
摘要

Although data-driven model has achieved remarkable results in gearbox fault diagnosis, its diagnostic accuracy is still highly dependent on large amounts of high-quality labeled samples. Some data generation methods, such as generative adversarial network, are utilized to address this problem. However, the generated simulation samples not only lack fault mechanism features with clear physical meaning, but also have distribution differences with the real samples. Aiming at the above problems, an enhanced unsupervised domain adaption method combined with vibration response mechanism is proposed for gearbox fault diagnosis. Firstly, various fault types of labeled simulation signals with clear physical meaning are generated based on vibration response mechanism of gearbox, alleviating the lack of large amounts of high-quality labeled samples for data-driven models. Secondly, to narrow the inevitable domain discrepancy between simulation samples and experimental samples, a domain mapping method is raised to both transform their distributions to normal distribution by optimizing an alignment function, which also could effectively improve the diagnostic speed and accuracy of intelligent models. Finally, the mapped samples are directly fed into an arbitrary unsupervised domain adaptation model to achieve fault diagnosis in the absence of any label information of measured samples. Importantly, the proposed domain mapping method can be simply appended to any existing core network to enhance diagnostic accuracy without necessitating modifications to its structure or training procedure. Experiments on two gearbox datasets suggest that the proposed method can effectively boost the performance of diagnosis issues with only a small number of experimental samples and outperform existing diagnosis approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
耍酷的傲白完成签到,获得积分10
1秒前
西咪替丁发布了新的文献求助10
1秒前
所所应助拼搏的金针菇采纳,获得10
1秒前
JF123_完成签到 ,获得积分10
1秒前
小罗发布了新的文献求助30
2秒前
Lucas应助甜甜宛海采纳,获得10
2秒前
2秒前
3秒前
被划分完成签到,获得积分10
3秒前
3秒前
菠萝肉发布了新的文献求助10
4秒前
4秒前
4秒前
聪明的八宝粥完成签到,获得积分10
5秒前
5秒前
钟旭完成签到,获得积分10
5秒前
5秒前
5秒前
qqqq完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助阮绿凝采纳,获得10
6秒前
史育川完成签到 ,获得积分10
6秒前
6秒前
XinX完成签到,获得积分10
6秒前
small发布了新的文献求助10
6秒前
生动秋白完成签到,获得积分20
6秒前
钟旭发布了新的文献求助10
8秒前
tian发布了新的文献求助20
8秒前
marjorie完成签到 ,获得积分10
8秒前
LIU完成签到,获得积分10
8秒前
Sun发布了新的文献求助10
9秒前
咯噔发布了新的文献求助10
9秒前
濮阳思远发布了新的文献求助10
9秒前
华仔应助ZHY2023采纳,获得10
9秒前
Capital完成签到,获得积分10
9秒前
平淡翎发布了新的文献求助10
10秒前
bbl发布了新的文献求助10
10秒前
priss111应助eplision采纳,获得30
10秒前
桃桃发布了新的文献求助10
10秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156848
求助须知:如何正确求助?哪些是违规求助? 2808269
关于积分的说明 7877026
捐赠科研通 2466691
什么是DOI,文献DOI怎么找? 1312998
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919