Fault diagnosis of gearbox driven by vibration response mechanism and enhanced unsupervised domain adaptation

机制(生物学) 振动 断层(地质) 模式识别(心理学) 领域(数学分析) 计算机科学 功能(生物学) 人工智能 质量(理念) 人工神经网络 数据挖掘 数学 地质学 物理 地震学 哲学 认识论 数学分析 进化生物学 量子力学 生物
作者
Fei Jiang,Weiqi Lin,Zhaoqian Wu,Shaohui Zhang,Zhuyun Chen,Weihua Li
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:61: 102460-102460 被引量:22
标识
DOI:10.1016/j.aei.2024.102460
摘要

Although data-driven model has achieved remarkable results in gearbox fault diagnosis, its diagnostic accuracy is still highly dependent on large amounts of high-quality labeled samples. Some data generation methods, such as generative adversarial network, are utilized to address this problem. However, the generated simulation samples not only lack fault mechanism features with clear physical meaning, but also have distribution differences with the real samples. Aiming at the above problems, an enhanced unsupervised domain adaption method combined with vibration response mechanism is proposed for gearbox fault diagnosis. Firstly, various fault types of labeled simulation signals with clear physical meaning are generated based on vibration response mechanism of gearbox, alleviating the lack of large amounts of high-quality labeled samples for data-driven models. Secondly, to narrow the inevitable domain discrepancy between simulation samples and experimental samples, a domain mapping method is raised to both transform their distributions to normal distribution by optimizing an alignment function, which also could effectively improve the diagnostic speed and accuracy of intelligent models. Finally, the mapped samples are directly fed into an arbitrary unsupervised domain adaptation model to achieve fault diagnosis in the absence of any label information of measured samples. Importantly, the proposed domain mapping method can be simply appended to any existing core network to enhance diagnostic accuracy without necessitating modifications to its structure or training procedure. Experiments on two gearbox datasets suggest that the proposed method can effectively boost the performance of diagnosis issues with only a small number of experimental samples and outperform existing diagnosis approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coconut完成签到 ,获得积分10
2秒前
淡然一德完成签到,获得积分10
2秒前
巴豆醇发布了新的文献求助10
2秒前
Xx完成签到 ,获得积分10
4秒前
5秒前
JH发布了新的文献求助10
5秒前
上官以山发布了新的文献求助10
5秒前
刘林发布了新的文献求助10
6秒前
鸣蜩阿六完成签到,获得积分10
6秒前
qyzhu完成签到,获得积分10
6秒前
活力新波应助屠夫9441采纳,获得20
6秒前
yongziwu完成签到,获得积分10
7秒前
闻疏完成签到,获得积分10
8秒前
凝雁完成签到,获得积分10
8秒前
huihui完成签到,获得积分10
9秒前
苒洳完成签到 ,获得积分10
10秒前
负责秋天完成签到,获得积分10
10秒前
10秒前
充电宝应助CHEN采纳,获得10
11秒前
车厘子完成签到 ,获得积分10
13秒前
wjp完成签到 ,获得积分10
14秒前
Cbbb3发布了新的文献求助10
14秒前
曹艳龙发布了新的文献求助10
15秒前
巴豆醇完成签到,获得积分10
16秒前
对方正在看文献完成签到,获得积分10
17秒前
夏夜完成签到 ,获得积分10
18秒前
一只大憨憨猫完成签到,获得积分10
18秒前
19秒前
肖珂完成签到,获得积分10
20秒前
20秒前
逝者如斯只是看着完成签到,获得积分10
23秒前
淡定的白筠完成签到,获得积分10
23秒前
23秒前
黎明完成签到 ,获得积分10
25秒前
小一完成签到,获得积分10
25秒前
蒋50完成签到,获得积分0
25秒前
25秒前
CHEN发布了新的文献求助10
26秒前
zyyyy完成签到,获得积分10
27秒前
陶醉小笼包完成签到 ,获得积分10
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212802
求助须知:如何正确求助?哪些是违规求助? 4388834
关于积分的说明 13664925
捐赠科研通 4249578
什么是DOI,文献DOI怎么找? 2331648
邀请新用户注册赠送积分活动 1329339
关于科研通互助平台的介绍 1282841