Fault diagnosis of gearbox driven by vibration response mechanism and enhanced unsupervised domain adaptation

机制(生物学) 振动 断层(地质) 模式识别(心理学) 领域(数学分析) 计算机科学 功能(生物学) 人工智能 质量(理念) 人工神经网络 数据挖掘 数学 地质学 物理 地震学 哲学 认识论 数学分析 进化生物学 量子力学 生物
作者
Fei Jiang,Weiqi Lin,Zhaoqian Wu,Shaohui Zhang,Zhuyun Chen,Weihua Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:61: 102460-102460 被引量:22
标识
DOI:10.1016/j.aei.2024.102460
摘要

Although data-driven model has achieved remarkable results in gearbox fault diagnosis, its diagnostic accuracy is still highly dependent on large amounts of high-quality labeled samples. Some data generation methods, such as generative adversarial network, are utilized to address this problem. However, the generated simulation samples not only lack fault mechanism features with clear physical meaning, but also have distribution differences with the real samples. Aiming at the above problems, an enhanced unsupervised domain adaption method combined with vibration response mechanism is proposed for gearbox fault diagnosis. Firstly, various fault types of labeled simulation signals with clear physical meaning are generated based on vibration response mechanism of gearbox, alleviating the lack of large amounts of high-quality labeled samples for data-driven models. Secondly, to narrow the inevitable domain discrepancy between simulation samples and experimental samples, a domain mapping method is raised to both transform their distributions to normal distribution by optimizing an alignment function, which also could effectively improve the diagnostic speed and accuracy of intelligent models. Finally, the mapped samples are directly fed into an arbitrary unsupervised domain adaptation model to achieve fault diagnosis in the absence of any label information of measured samples. Importantly, the proposed domain mapping method can be simply appended to any existing core network to enhance diagnostic accuracy without necessitating modifications to its structure or training procedure. Experiments on two gearbox datasets suggest that the proposed method can effectively boost the performance of diagnosis issues with only a small number of experimental samples and outperform existing diagnosis approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暮雨完成签到,获得积分10
1秒前
SciGPT应助ebby采纳,获得10
2秒前
nyyyyyy完成签到,获得积分10
2秒前
默客发布了新的文献求助10
2秒前
ChaiHaobo完成签到,获得积分10
4秒前
暮雨发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
方班术完成签到,获得积分10
6秒前
谢文强完成签到,获得积分10
8秒前
8秒前
liyang完成签到,获得积分10
8秒前
方班术发布了新的文献求助10
8秒前
科研通AI6应助默客采纳,获得10
8秒前
超大杯冰摇红莓黑加仑茶完成签到,获得积分10
9秒前
星海妖魂完成签到,获得积分10
9秒前
科研通AI6应助ChaiHaobo采纳,获得10
9秒前
9秒前
9秒前
orixero应助九七采纳,获得10
10秒前
研友_VZG7GZ应助柚子加冰采纳,获得10
11秒前
11秒前
xxfsx应助Noah采纳,获得10
13秒前
14秒前
keyanzhai发布了新的文献求助10
15秒前
蔓蔓要努力完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
YAOHA发布了新的文献求助10
17秒前
19秒前
19秒前
动听千山发布了新的文献求助200
19秒前
璩qu发布了新的文献求助10
21秒前
星海妖魂发布了新的文献求助10
22秒前
tovfix发布了新的文献求助10
22秒前
默客完成签到,获得积分10
23秒前
Zzzzzzz发布了新的文献求助10
24秒前
vcccc发布了新的文献求助10
24秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469534
求助须知:如何正确求助?哪些是违规求助? 4572619
关于积分的说明 14336346
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465098
邀请新用户注册赠送积分活动 1453599
关于科研通互助平台的介绍 1428091