MF 2 ShrT: Multimodal Feature Fusion Using Shared Layered Transformer for Face Anti-spoofing

计算机科学 融合 变压器 面子(社会学概念) 特征(语言学) 人工智能 模式识别(心理学) 欺骗攻击 计算机视觉 语音识别 计算机安全 物理 社会科学 哲学 语言学 量子力学 电压 社会学
作者
Aashania Antil,Chhavi Dhiman
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (6): 1-21 被引量:3
标识
DOI:10.1145/3640817
摘要

In recent times, Face Anti-spoofing (FAS) has gained significant attention in both academic and industrial domains. Although various convolutional neural network (CNN)-based solutions have emerged, multimodal approaches incorporating RGB, depth, and information retrieval (IR) have exhibited better performance than unimodal classifiers. The increasing veracity of modern presentation attack instruments results in a persistent need to enhance the performance of such models. Recently, self-attention-based vision transformers (ViT) have become a popular choice in this field. Their fundamental aspects for multimodal FAS have not been thoroughly explored yet. Therefore, we propose a novel framework for FAS called MF 2 ShrT, which is based on a pretrained vision transformer. The proposed framework uses overlap patches and parameter sharing in the ViT network, allowing it to utilize multiple modalities in a computationally efficient manner. Furthermore, to effectively fuse intermediate features from different encoders of each ViT, we explore a T-encoder-based hybrid feature block enabling the system to identify correlations and dependencies across different modalities. MF 2 ShrT outperforms conventional vision transformers and achieves state-of-the-art performance on benchmarks CASIA-SURF and WMCA, demonstrating the efficiency of transformer-based models for presentation attack detection PAD).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gia发布了新的文献求助30
1秒前
可可完成签到,获得积分10
1秒前
1秒前
沉尘发布了新的文献求助10
1秒前
2秒前
hmh发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助小十七果采纳,获得10
2秒前
叮叮当完成签到,获得积分10
2秒前
2秒前
安呢完成签到,获得积分10
3秒前
Zhoey发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
夏天完成签到,获得积分10
5秒前
朱慧龙完成签到 ,获得积分10
5秒前
老肖发布了新的文献求助10
5秒前
小学森发布了新的文献求助10
5秒前
想人陪的向南完成签到,获得积分10
5秒前
6秒前
今后应助LTT采纳,获得50
6秒前
CodeCraft应助不吃香菇采纳,获得10
6秒前
7秒前
朱猪侠发布了新的文献求助10
7秒前
JJSmith发布了新的文献求助10
7秒前
FashionBoy应助AAACharlie采纳,获得10
7秒前
超帅连虎发布了新的文献求助10
9秒前
猪猪hero应助可可采纳,获得10
9秒前
敏感以旋发布了新的文献求助10
9秒前
9秒前
9秒前
最专业完成签到,获得积分10
10秒前
10秒前
dandan发布了新的文献求助30
11秒前
万能图书馆应助小学森采纳,获得10
11秒前
黄子舟完成签到,获得积分10
11秒前
12秒前
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961408
求助须知:如何正确求助?哪些是违规求助? 3507744
关于积分的说明 11137921
捐赠科研通 3240204
什么是DOI,文献DOI怎么找? 1790848
邀请新用户注册赠送积分活动 872587
科研通“疑难数据库(出版商)”最低求助积分说明 803288