Plasma protein signatures of adult asthma

哮喘 过敏性 医学 逻辑回归 免疫学 蛋白质组学 内科学 生物 生物化学 基因
作者
Gordon Smilnak,Yura Lee,Abhijnan Chattopadhyay,Annah B. Wyss,Julie D. White,Sinjini Sikdar,Jianping Jin,Andrew J. Grant,Alison A. Motsinger‐Reif,Jian‐Liang Li,Mi Kyeong Lee,Bing Yu,Stephanie J. London
出处
期刊:Allergy [Wiley]
卷期号:79 (3): 643-655 被引量:1
标识
DOI:10.1111/all.16000
摘要

Abstract Background Adult asthma is complex and incompletely understood. Plasma proteomics is an evolving technique that can both generate biomarkers and provide insights into disease mechanisms. We aimed to identify plasma proteomic signatures of adult asthma. Methods Protein abundance in plasma was measured in individuals from the Agricultural Lung Health Study (ALHS) (761 asthma, 1095 non‐case) and the Atherosclerosis Risk in Communities study (470 asthma, 10,669 non‐case) using the SOMAScan 5K array. Associations with asthma were estimated using covariate adjusted logistic regression and meta‐analyzed using inverse‐variance weighting. Additionally, in ALHS, we examined phenotypes based on both asthma and seroatopy (asthma with atopy ( n = 207), asthma without atopy ( n = 554), atopy without asthma ( n = 147), compared to neither ( n = 948)). Results Meta‐analysis of 4860 proteins identified 115 significantly (FDR<0.05) associated with asthma. Multiple signaling pathways related to airway inflammation and pulmonary injury were enriched (FDR<0.05) among these proteins. A proteomic score generated using machine learning provided predictive value for asthma (AUC = 0.77, 95% CI = 0.75–0.79 in training set; AUC = 0.72, 95% CI = 0.69–0.75 in validation set). Twenty proteins are targeted by approved or investigational drugs for asthma or other conditions, suggesting potential drug repurposing. The combined asthma‐atopy phenotype showed significant associations with 20 proteins, including five not identified in the overall asthma analysis. Conclusion This first large‐scale proteomics study identified over 100 plasma proteins associated with current asthma in adults. In addition to validating previous associations, we identified many novel proteins that could inform development of diagnostic biomarkers and therapeutic targets in asthma management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叁壹粑粑完成签到,获得积分10
1秒前
酷酷碧完成签到,获得积分10
1秒前
2秒前
磕盐民工完成签到,获得积分10
3秒前
3秒前
忘羡222发布了新的文献求助20
3秒前
我是老大应助TT采纳,获得10
5秒前
5秒前
5秒前
雪鸽鸽完成签到,获得积分10
6秒前
完美世界应助开心青旋采纳,获得10
6秒前
LD完成签到 ,获得积分10
8秒前
xjy完成签到 ,获得积分10
8秒前
qzaima完成签到,获得积分10
8秒前
9秒前
xueshufengbujue完成签到,获得积分10
9秒前
楼寒天发布了新的文献求助10
9秒前
10秒前
科研通AI5应助111111111采纳,获得10
11秒前
11秒前
sunsunsun完成签到,获得积分10
11秒前
哎嘤斯坦完成签到,获得积分10
13秒前
13秒前
sweetbearm应助潦草采纳,获得10
14秒前
sunsunsun发布了新的文献求助10
14秒前
酷波er应助Mars采纳,获得10
15秒前
迪士尼在逃后母完成签到,获得积分10
15秒前
15秒前
我是老大应助su采纳,获得10
16秒前
hhh发布了新的文献求助10
17秒前
18秒前
科研通AI5应助魏伯安采纳,获得10
19秒前
19秒前
神可馨完成签到 ,获得积分10
20秒前
Hangerli发布了新的文献求助20
20秒前
HealthyCH完成签到,获得积分10
20秒前
li完成签到,获得积分10
21秒前
22秒前
ononon发布了新的文献求助10
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824