Medical hyperspectral image classification based weakly supervised single-image global learning network

计算机科学 高光谱成像 人工智能 图像(数学) 模式识别(心理学) 上下文图像分类 机器学习 计算机视觉
作者
Chenglong Zhang,Lichao Mou,Shihao Shan,Hao Zhang,Yafei Qi,Dexin Yu,Xiao Xiang Zhu,Nianzheng Sun,Xiangrong Zheng,Xiaopeng Ma
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108042-108042 被引量:15
标识
DOI:10.1016/j.engappai.2024.108042
摘要

Medical hyperspectral imaging provides new possibilities for non-invasive detection and characterization of diseases, and the processing of images can be accelerated and rationalized by using deep learning technology to classify pixels as one tissue or another, or as lesion or healthy tissue. However, most current methods for intelligently identifying pixels are not robust to large variations in pixel intensity within an image, particularly local learning approaches that rely on pixel or patch input. In this paper, we propose a network being able to learn to classify all pixels on an image by training with only a small number of manually labeled pixels in the same image. The network contains a hard band attention module (HBAM) to eliminate noisy bands and a dual-kernel spatial–spectral fusion attention module (DK-SSFAM) which uses two convolution kernels to weight spatial and spectral features and integrates them accordingly. We demonstrate that our proposed weakly supervised single-image global learning (SiGL) network classifies pixels in hyperspectral images of human brain in vivo better than traditional deep learning methods, suggesting potential for the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助Maico采纳,获得10
刚刚
CipherSage应助dilibolaba采纳,获得10
刚刚
1秒前
小马甲应助Susie大可采纳,获得10
2秒前
落子狮发布了新的文献求助10
2秒前
2秒前
yuequ发布了新的文献求助10
3秒前
激动烦凡发布了新的文献求助10
4秒前
hg08发布了新的文献求助10
4秒前
hw发布了新的文献求助10
5秒前
顾矜应助swordlee采纳,获得10
5秒前
7秒前
7秒前
7秒前
所所应助董小星采纳,获得10
8秒前
9秒前
JIA完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
激动烦凡完成签到,获得积分10
11秒前
11秒前
12秒前
Gulziba发布了新的文献求助10
13秒前
13秒前
包容的语薇完成签到,获得积分10
14秒前
rest完成签到 ,获得积分10
14秒前
怡然凝云发布了新的文献求助10
14秒前
14秒前
16秒前
18秒前
18秒前
18秒前
虚幻百川应助青青采纳,获得10
18秒前
18秒前
SI发布了新的文献求助20
19秒前
Lupin发布了新的文献求助10
19秒前
Lucas应助七月采纳,获得10
20秒前
swordlee发布了新的文献求助10
21秒前
tae117发布了新的文献求助10
22秒前
深情安青应助温柔的寒云采纳,获得10
23秒前
桐桐应助化雪彼岸采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507241
求助须知:如何正确求助?哪些是违规求助? 4602647
关于积分的说明 14482442
捐赠科研通 4536668
什么是DOI,文献DOI怎么找? 2486306
邀请新用户注册赠送积分活动 1468882
关于科研通互助平台的介绍 1441329