Particle filter-based fatigue damage prognosis by fusing multiple degradation models

稳健性(进化) 降级(电信) 颗粒过滤器 背景(考古学) 计算机科学 滤波器(信号处理) 可靠性工程 工程类 计算机视觉 化学 电信 古生物学 生物化学 生物 基因
作者
Tianzhi Li,Jian Chen,Shenfang Yuan,Dimitrios Zarouchas,Claudio Sbarufatti,Francesco Cadini
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (5): 3253-3275 被引量:3
标识
DOI:10.1177/14759217231216697
摘要

Fatigue damage prognosis always requires a degradation model describing the damage evolution with time; thus, the prognostic performance highly depends on the selection of such a model. The best model should probably be case specific, calling for the fusion of multiple degradation models for a robust prognosis. In this context, this paper proposes a scheme of online fusing multiple models in a particle filter (PF)-based damage prognosis framework. First, each prognostic model has its process equation built through a physics-based or data-driven degradation model and has its measurement equation linking the damage state and the measurement. Second, each model is independently processed through one PF to provide one group of particles. Then, the particles from all models are adopted for remaining useful life prediction. Finally, the particles from each PF are fused with those from all the other PFs to improve their particle diversity, and consequently, to provide better estimation and prognostic performance. The feasibility and robustness of the proposed method are validated by an experimental study, where an aluminum lug structure subject to fatigue crack growth is monitored by a guided wave measurement system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yao学渣完成签到 ,获得积分10
刚刚
不二臣发布了新的文献求助10
1秒前
可爱的函函应助kkk采纳,获得10
1秒前
斯文败类应助偷乐采纳,获得10
1秒前
Ava应助mariawang采纳,获得10
2秒前
girl发布了新的文献求助10
2秒前
orixero应助szl采纳,获得10
2秒前
自然初露关注了科研通微信公众号
3秒前
yu完成签到 ,获得积分10
3秒前
KingXing完成签到,获得积分10
4秒前
粗犷的灵松完成签到 ,获得积分10
4秒前
yyyyy关注了科研通微信公众号
6秒前
小姚发布了新的文献求助10
6秒前
wjw完成签到,获得积分10
7秒前
7秒前
毛小驴完成签到,获得积分10
8秒前
谢俏艳完成签到,获得积分10
8秒前
lm发布了新的文献求助10
8秒前
8秒前
8秒前
852应助咕噜咕噜咕嘟咕嘟采纳,获得10
9秒前
9秒前
小哥门完成签到,获得积分10
10秒前
Puan发布了新的文献求助10
10秒前
10秒前
sylnd126发布了新的文献求助10
11秒前
12秒前
峥2发布了新的文献求助10
12秒前
12秒前
吵吵robot发布了新的文献求助10
12秒前
13秒前
Nami发布了新的文献求助10
13秒前
吴丹完成签到,获得积分10
15秒前
15秒前
开放雪碧完成签到,获得积分10
15秒前
白日梦发布了新的文献求助10
16秒前
16秒前
16秒前
szl发布了新的文献求助10
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021