亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Particle filter-based fatigue damage prognosis by fusing multiple degradation models

稳健性(进化) 降级(电信) 颗粒过滤器 背景(考古学) 计算机科学 滤波器(信号处理) 可靠性工程 工程类 计算机视觉 化学 电信 古生物学 生物化学 生物 基因
作者
Tianzhi Li,Jian Chen,Shenfang Yuan,Dimitrios Zarouchas,Claudio Sbarufatti,Francesco Cadini
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (5): 3253-3275 被引量:3
标识
DOI:10.1177/14759217231216697
摘要

Fatigue damage prognosis always requires a degradation model describing the damage evolution with time; thus, the prognostic performance highly depends on the selection of such a model. The best model should probably be case specific, calling for the fusion of multiple degradation models for a robust prognosis. In this context, this paper proposes a scheme of online fusing multiple models in a particle filter (PF)-based damage prognosis framework. First, each prognostic model has its process equation built through a physics-based or data-driven degradation model and has its measurement equation linking the damage state and the measurement. Second, each model is independently processed through one PF to provide one group of particles. Then, the particles from all models are adopted for remaining useful life prediction. Finally, the particles from each PF are fused with those from all the other PFs to improve their particle diversity, and consequently, to provide better estimation and prognostic performance. The feasibility and robustness of the proposed method are validated by an experimental study, where an aluminum lug structure subject to fatigue crack growth is monitored by a guided wave measurement system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
Imran完成签到,获得积分10
18秒前
爱思考的小笨笨完成签到,获得积分10
23秒前
梅子黄时雨完成签到,获得积分10
49秒前
53秒前
量子星尘发布了新的文献求助10
58秒前
1分钟前
1分钟前
科研通AI6.1应助993494543采纳,获得10
1分钟前
1分钟前
优美的莹芝完成签到,获得积分10
1分钟前
科研通AI2S应助信陵君无忌采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
古古怪界丶黑大帅完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
993494543发布了新的文献求助10
4分钟前
993494543完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
爆米花应助科研通管家采纳,获得30
4分钟前
4分钟前
4分钟前
eeevaxxx完成签到 ,获得积分10
4分钟前
852应助安青兰采纳,获得10
5分钟前
5分钟前
5分钟前
安青兰发布了新的文献求助10
5分钟前
5分钟前
Feng完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764374
求助须知:如何正确求助?哪些是违规求助? 5551219
关于积分的说明 15406175
捐赠科研通 4899585
什么是DOI,文献DOI怎么找? 2635809
邀请新用户注册赠送积分活动 1583978
关于科研通互助平台的介绍 1539134