DXA-based statistical models of shape and intensity outperform aBMD hip fracture prediction: A retrospective study

医学 背景(考古学) 逻辑回归 髋部骨折 强度(物理) 骨矿物 接收机工作特性 回顾性队列研究 口腔正畸科 核医学 骨质疏松症 外科 内科学 地质学 物理 量子力学 古生物学
作者
Alessandra Aldieri,Margaret Paggiosi,Richard Eastell,Cristina Bignardi,Alberto Audenino,Pinaki Bhattacharya,Mara Terzini
出处
期刊:Bone [Elsevier]
卷期号:: 117051-117051
标识
DOI:10.1016/j.bone.2024.117051
摘要

Areal bone mineral density (aBMD) currently represents the clinical gold standard for hip fracture risk assessment. Nevertheless, it is characterised by a limited prediction accuracy, as about half of the people experiencing a fracture are not classified as at being at risk by aBMD. In the context of a progressively ageing population, the identification of accurate predictive tools would be pivotal to implement preventive actions. In this study, DXA-based statistical models of the proximal femur shape, intensity (i.e., density) and their combination were developed and employed to predict hip fracture on a retrospective cohort of post-menopausal women. Proximal femur shape and pixel-by-pixel aBMD values were extracted from DXA images and partial least square (PLS) algorithm adopted to extract corresponding modes and components. Subsequently, logistic regression models were built employing the first three shape, intensity and shape-intensity PLS components, and their ability to predict hip fracture tested according to a 10-fold cross-validation procedure. The area under the ROC curves (AUC) for the shape, intensity, and shape-intensity-based predictive models were 0.59 (95%CI 0.47–0.69), 0.80 (95%CI 0.70–0.90) and 0.83 (95%CI 0.73–0.90), with the first being significantly lower than the latter two. aBMD yielded an AUC of 0.72 (95%CI 0.59–0.82), found to be significantly lower than the shape-intensity-based predictive model. In conclusion, a methodology to assess hip fracture risk uniquely based on the clinically available imaging technique, DXA, is proposed. Our study results show that hip fracture risk prediction could be enhanced by taking advantage of the full set of information DXA contains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ll完成签到,获得积分10
4秒前
5秒前
心木完成签到 ,获得积分10
7秒前
义气的碧玉完成签到,获得积分10
7秒前
许晓蝶完成签到,获得积分10
8秒前
123123完成签到 ,获得积分20
9秒前
病毒遗传学完成签到,获得积分10
10秒前
hahaha完成签到,获得积分10
10秒前
charih完成签到 ,获得积分10
13秒前
yar应助时生111采纳,获得10
14秒前
123123关注了科研通微信公众号
14秒前
七熵完成签到 ,获得积分10
14秒前
我是老大应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
duanhuiyuan应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
Owen应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
22秒前
单薄的天奇完成签到,获得积分10
26秒前
xt完成签到 ,获得积分10
27秒前
27秒前
zhb发布了新的文献求助10
27秒前
盛清让完成签到,获得积分10
31秒前
叶绿体机智完成签到,获得积分10
32秒前
33秒前
乐乐应助明亮无颜采纳,获得30
33秒前
你的小可爱突然出现完成签到,获得积分10
37秒前
都能进发布了新的文献求助10
38秒前
zzuwxj完成签到,获得积分10
40秒前
43秒前
44秒前
44秒前
45秒前
nzq发布了新的文献求助10
45秒前
kc135完成签到,获得积分10
47秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461092
求助须知:如何正确求助?哪些是违规求助? 3054904
关于积分的说明 9045252
捐赠科研通 2744780
什么是DOI,文献DOI怎么找? 1505651
科研通“疑难数据库(出版商)”最低求助积分说明 695763
邀请新用户注册赠送积分活动 695173