A hybrid wind speed prediction model using improved CEEMDAN and Autoformer model with auto-correlation mechanism

风速 机制(生物学) 相关性 气象学 计算机科学 数学 物理 几何学 量子力学
作者
Bala Saibabu Bommidi,Kiran Teeparthi
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier BV]
卷期号:64: 103687-103687 被引量:10
标识
DOI:10.1016/j.seta.2024.103687
摘要

This study addresses the critical need for precise and reliable wind speed predictions in the context of global environmental challenges and the increasing demand for sustainable energy. To overcome the challenges posed by the unpredictability of seasonal and stochastic winds, a novel and hybrid methodology is proposed in this study. The proposed hybrid methodology consisting improved version of the data denoising algorithm complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), and Autoformer (AF) architecture with an Auto-Correlation (ACE) mechanism for the wind speed prediction (WSP). ICEEMDAN solves the problems in CEEMDAN: mode-mixing, aliasing, and noise. AF model uses a series decomposition block to enables the gradual aggregation of long-term trends from intermediate predictions. ACE mechanism in AF is distinct from self-attention, showing better efficiency and accuracy. The proposed hybrid model is evaluated using wind speed data from Block Island and Gulf Coast wind farms. The performance of current WSP methods is observed to decline with increasing time horizons. Addressing this problem, the proposed hybrid methodology's effectiveness is evaluated using eight separate models and eight hybrid models over six time horizons: 5-min, 10-min, 15-min, 30-min, 1-hour, and 2-hour ahead WSP. Results from the two conducted experiments demonstrate that the proposed methodology demonstrated enhanced performance, leading to a statistically significant improvement across all assessed time horizons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葡萄成熟完成签到,获得积分10
1秒前
钱钱钱完成签到,获得积分10
1秒前
weishen完成签到,获得积分0
2秒前
剧院的饭桶完成签到,获得积分10
3秒前
英俊的铭应助Ma采纳,获得10
3秒前
爆米花应助xiejinhui采纳,获得10
4秒前
Qiao发布了新的文献求助10
6秒前
6秒前
华仔应助Kurt采纳,获得10
6秒前
8秒前
qq158014169完成签到 ,获得积分10
8秒前
果果发布了新的文献求助10
10秒前
眼睛大雨筠应助SOulemaftg采纳,获得50
11秒前
Rinsana完成签到,获得积分10
13秒前
陶醉夏旋完成签到,获得积分10
14秒前
石头发布了新的文献求助10
14秒前
醋醋发布了新的文献求助10
15秒前
16秒前
归尘应助陶醉夏旋采纳,获得10
17秒前
CAOHOU应助Rita采纳,获得10
17秒前
机智嘉懿完成签到,获得积分10
19秒前
魔幻沛菡完成签到 ,获得积分10
20秒前
满心欢喜完成签到,获得积分10
20秒前
给大佬递茶完成签到,获得积分10
21秒前
Clean发布了新的文献求助10
21秒前
定西发布了新的文献求助10
21秒前
飘逸灰狼完成签到,获得积分10
22秒前
22秒前
石头完成签到,获得积分10
23秒前
28秒前
mojie62发布了新的文献求助10
28秒前
敏感的夏青完成签到 ,获得积分10
29秒前
Maggie完成签到,获得积分10
30秒前
30秒前
30秒前
所所应助科研通管家采纳,获得10
30秒前
MchemG应助科研通管家采纳,获得10
30秒前
MchemG应助科研通管家采纳,获得10
30秒前
bkagyin应助科研通管家采纳,获得10
31秒前
烟花应助科研通管家采纳,获得10
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962523
求助须知:如何正确求助?哪些是违规求助? 3508549
关于积分的说明 11141583
捐赠科研通 3241262
什么是DOI,文献DOI怎么找? 1791486
邀请新用户注册赠送积分活动 872876
科研通“疑难数据库(出版商)”最低求助积分说明 803474