作者
Ya Hou,Fuhan Fan,Na Xie,Yi Zhang,Xiaobo Wang,Xianli Meng
摘要
: Rhodiola crenulata (Hook. f. et Thoms.) H. Ohba (R. crenulate), a famous and characteristic Tibetan medicine, has been demonstrated to exert an outstanding brain protection role in the treatment of high-altitude hypoxia disease. However, the metabolic effects of R. crenulate on high-altitude hypoxic brain injury (HHBI) are still incompletely understood. Herein, the anti-hypoxic effect and associated mechanisms of R. crenulate were explored through both in vivo and in vitro experiments. The mice model of HHBI was established using an animal hypobaric and hypoxic chamber. R. crenulate extract (RCE, 0.5, 1.0 and 2.0 g/kg) and salidroside (Sal, 25, 50 and 100 mg/kg) was given by gavage for 7 days. Pathological changes and neuronal apoptosis of mice hippocampus and cortex were evaluated using H&E and TUNEL staining, respectively. The effects of RCE and Sal on the permeability of blood brain barrier (BBB) were detected by Evans blue staining and NIR-II fluorescence imaging. Meanwhile, the ultrastructural BBB and cerebrovascular damages were observed using a transmission electron microscope (TEM). The levels of tight junction proteins Claudin-1, ZO-1 and occludin were detected by immunofluorescence. Additionally, the metabolites in mice serum and brain were determined using UHPLC-MS and MALDI-MSI analysis. The cell viability of Sal on hypoxic HT22 cells induced by CoCl2 was investigated by cell counting kit-8. The contents of LDH, MDA, SOD, GSH-PX and SDH were detected by using commercial biochemical kits. Meanwhile, intracellular ROS, Ca2+ and mitochondrial membrane potential were determined by corresponding specific labeled probes. The intracellular metabolites of HT22 cells were performed by the targeted metabolomics analysis of the Q300 kit. The cell apoptosis and necrosis were examined by YO-PRO-1/PI, Annexin V/PI and TUNEL staining. In addition, mitochondrial morphology was tested by Mito-tracker red with confocal microscopy and TEM. Real-time ATP production, oxygen consumption rate, and proton efflux rate were measured using a Seahorse analyzer. Subsequently, MCU, OPA1, p-Drp1ser616, p-AMPKα, p-AMPKβ and Sirt1 were determined by immunofluorescent and western blot analyses. The results demonstrated that R. crenulate and Sal exert anti-hypoxic brain protection from inhibiting neuronal apoptosis, maintaining BBB integrity, increasing tight junction protein Claudin-1, ZO-1 and occludin and improving mitochondrial morphology and function. Mechanistically, R. crenulate and Sal alleviated HHBI by enhancing the tricarboxylic acid cycle to meet the demand of energy of brain. Additionally, experiments in vitro confirmed that Sal could ameliorate the apoptosis of HT22 cells, improve mitochondrial morphology and energy metabolism by enhancing mitochondrial respiration and glycolysis. Meanwhile, Sal-mediated MCU inhibited the activation of Drp1 and enhanced the expression of OPA1 to maintain mitochondrial homeostasis, as well as activation of AMPK and Sirt1 to enhance ATP production. Collectively, the findings suggested that RCE and Sal may afford a protective intervention in HHBI through maintaining BBB integrity and improving energy metabolism via balancing MCU-mediated mitochondrial homeostasis by activating the AMPK/Sirt1 signaling pathway.