BACKLAND: spatially explicit and high‐resolution pollen‐based BACKward LAND‐cover reconstructions

土地覆盖 马赛克 植被(病理学) 地理 花粉 数据集成 生物扩散 土地利用 自然地理学 遥感 地图学 计算机科学 生态学 数据挖掘 人口 生物 医学 人口学 考古 病理 社会学
作者
Clara Plancher,Florence Mazier,Thomas Houet,Cédric Gaucherel
出处
期刊:Ecography [Wiley]
卷期号:2024 (2)
标识
DOI:10.1111/ecog.06853
摘要

Studying the interactions between humans, land‐cover and biodiversity is necessary for the sustainable management of socio‐ecosystems and requires long‐term reconstructions of past landscapes, improving the integration of slow processes. The main source of information on past vegetation is fossil pollen, but pollen data are biased by inter‐taxonomic differential production and dispersal. The landscape reconstruction algorithm (LRA) approach is the most widely used to correct for these biases. The LOVE algorithm (LOcal Vegetation estimates), the second step in the LRA approach, also estimates the spatial extent of the local vegetation reconstruction zone (the relevant source area of pollen, RSAP). While LRA estimates have already been integrated into certain past land‐cover mapping approaches, none have been designed to allow the diachronic reconstruction of a land‐cover mosaic over the long term combining the following points: the direct integration of LOVE estimates as a source of variability in the composition and distribution of pollen taxa, without multiple scenarios, and the integration of spatiotemporal autocorrelation in the taxa distribution between periods. Here, we propose an innovative approach for BACKward LAND‐cover reconstruction (BACKLAND), combining these points and estimating the past land‐cover mosaic within a set of RSAPs. Based on three stages using parsimonious assumptions and easy‐to‐implement probabilistic and statistical tools, this approach requires LOVE estimates of sites close enough to each other for their RSAPs to overlap, botanical data, a digital elevation model and two recent land‐cover maps. Developed and tested on a small study area within the mountain landscape of the Bassiès valley (French Pyrenees), BACKLAND achieved the reconstruction of a past land‐cover map representing eight land‐cover types at a spatial resolution of 20 m with a good level of accuracy. We show in this study the originality of this approach and discuss its potential for palaeoenvironmental studies, historical ecology and the management of socio‐ecosystems.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
song发布了新的文献求助10
刚刚
刚刚
OnMyWorldside发布了新的文献求助10
1秒前
斯文败类应助san行采纳,获得10
1秒前
ff55166发布了新的文献求助10
3秒前
Lucas应助Jeff采纳,获得10
3秒前
二不想开根号完成签到 ,获得积分10
3秒前
SciGPT应助笑颜采纳,获得10
4秒前
充电宝应助ff采纳,获得10
4秒前
Sun_Chen完成签到,获得积分10
4秒前
hyd1640完成签到,获得积分10
4秒前
4秒前
李大爷的科研完成签到,获得积分10
4秒前
道友且慢完成签到,获得积分10
5秒前
6秒前
乐天林完成签到 ,获得积分10
6秒前
6秒前
7秒前
YU发布了新的文献求助10
8秒前
8秒前
美满的砖头完成签到 ,获得积分10
9秒前
OnMyWorldside完成签到,获得积分10
10秒前
所所应助song采纳,获得10
10秒前
11秒前
shenzhou9发布了新的文献求助10
12秒前
Hello应助锋回露转123采纳,获得10
13秒前
JUll完成签到,获得积分10
13秒前
april发布了新的文献求助30
14秒前
lerning完成签到,获得积分10
15秒前
田様应助acutelily采纳,获得10
16秒前
情怀应助YU采纳,获得10
16秒前
nini发布了新的文献求助10
17秒前
积极冰淇淋完成签到,获得积分10
17秒前
CipherSage应助yjihn采纳,获得10
18秒前
Yuzu应助shenzhou9采纳,获得10
19秒前
liangxianli完成签到,获得积分10
22秒前
kylin完成签到,获得积分10
22秒前
材料打工人完成签到 ,获得积分10
23秒前
爱学习的小趴菜完成签到,获得积分10
23秒前
华仔应助科研通管家采纳,获得10
27秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3414346
求助须知:如何正确求助?哪些是违规求助? 3016425
关于积分的说明 8876599
捐赠科研通 2704273
什么是DOI,文献DOI怎么找? 1482596
科研通“疑难数据库(出版商)”最低求助积分说明 685467
邀请新用户注册赠送积分活动 680251