Pyramid Shape-Aware Semi-supervised Learning for Thyroid Nodules Segmentation in Ultrasound Images

计算机科学 分割 人工智能 棱锥(几何) 模式识别(心理学) 基本事实 甲状腺结节 特征(语言学) 图像分割 监督学习 机器学习 人工神经网络 数学 语言学 哲学 几何学 生物 恶性肿瘤 遗传学
作者
Na Zhang,Juan Liu,Meng Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 407-418
标识
DOI:10.1007/978-981-99-8469-5_32
摘要

The accurate segmentation of thyroid nodules in ultrasound (US) images is critical for computer-aided diagnosis of thyroid cancer. While the fully supervised methods achieve high accuracy, they require a significant amount of annotated data for training, which is both costly and time-consuming. Semi-supervised learning can address this challenge by using a limited amount of labeled data in combination with a large amount of unlabeled data. However, the existing semi-supervised segmentation approaches often fail to account for both geometric shape constraints and scale differences of objects. To address this issue, in this paper we propose a novel Pyramid Shape-aware Semi-supervised Learning (PSSSL) framework for thyroid nodules segmentation in US images, which employs a dual-task pyramid prediction network to jointly predict the Segmentation Maps (SEG) and Signed Distance Maps (SDM) of objects at different scales. Pyramid feature prediction enables better adaptation to differences in nodule size, while the SDM provides a representation that encodes richer shape features of the target. PSSSL learns from the labeled data by minimizing the discrepancy between the prediction and the ground-truth and learns from unlabeled data by minimizing the discrepancy between the predictions at different scales and the average prediction. To achieve reliable and robust segmentation, two uncertainty estimation modules are designed to emphasize reliable predictions while ignoring unreliable predictions from unlabeled data. The proposed PSSSL framework achieves superior performance in both quantitative and qualitative evaluations on the DDTI and TN3k datasets to State-Of-The-Art semi-supervised approaches. The code is available at https://github.com/wuliZN2020/Thyroid-Segmentation-PSSSL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
fabea完成签到,获得积分10
3秒前
5秒前
11mao11完成签到 ,获得积分10
6秒前
Yumiko完成签到 ,获得积分10
8秒前
10秒前
13秒前
无情飞薇完成签到 ,获得积分10
15秒前
doclarrin完成签到 ,获得积分10
20秒前
21秒前
俊逸吐司完成签到 ,获得积分10
27秒前
直率新柔完成签到 ,获得积分10
27秒前
01259完成签到 ,获得积分10
29秒前
蔡晓华完成签到,获得积分10
31秒前
美好灵寒完成签到 ,获得积分10
32秒前
35秒前
38秒前
tiany完成签到,获得积分10
51秒前
51秒前
青柠完成签到 ,获得积分10
57秒前
看文献完成签到,获得积分10
57秒前
1分钟前
震动的鹏飞完成签到 ,获得积分10
1分钟前
1分钟前
洁净的幼珊完成签到,获得积分10
1分钟前
简单应助科研通管家采纳,获得10
1分钟前
萧萧应助科研通管家采纳,获得10
1分钟前
shouz应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
简单应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
zhixue2025完成签到 ,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
简单应助科研通管家采纳,获得10
1分钟前
ycd完成签到,获得积分10
1分钟前
1分钟前
YufeiLiu发布了新的文献求助10
1分钟前
Damon完成签到 ,获得积分10
1分钟前
缺口口完成签到 ,获得积分10
1分钟前
dddd完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449763
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481712
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438559