Pyramid Shape-Aware Semi-supervised Learning for Thyroid Nodules Segmentation in Ultrasound Images

计算机科学 分割 人工智能 棱锥(几何) 模式识别(心理学) 基本事实 甲状腺结节 特征(语言学) 图像分割 监督学习 机器学习 人工神经网络 数学 哲学 生物 遗传学 语言学 几何学 恶性肿瘤
作者
Na Zhang,Juan Liu,Meng Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 407-418
标识
DOI:10.1007/978-981-99-8469-5_32
摘要

The accurate segmentation of thyroid nodules in ultrasound (US) images is critical for computer-aided diagnosis of thyroid cancer. While the fully supervised methods achieve high accuracy, they require a significant amount of annotated data for training, which is both costly and time-consuming. Semi-supervised learning can address this challenge by using a limited amount of labeled data in combination with a large amount of unlabeled data. However, the existing semi-supervised segmentation approaches often fail to account for both geometric shape constraints and scale differences of objects. To address this issue, in this paper we propose a novel Pyramid Shape-aware Semi-supervised Learning (PSSSL) framework for thyroid nodules segmentation in US images, which employs a dual-task pyramid prediction network to jointly predict the Segmentation Maps (SEG) and Signed Distance Maps (SDM) of objects at different scales. Pyramid feature prediction enables better adaptation to differences in nodule size, while the SDM provides a representation that encodes richer shape features of the target. PSSSL learns from the labeled data by minimizing the discrepancy between the prediction and the ground-truth and learns from unlabeled data by minimizing the discrepancy between the predictions at different scales and the average prediction. To achieve reliable and robust segmentation, two uncertainty estimation modules are designed to emphasize reliable predictions while ignoring unreliable predictions from unlabeled data. The proposed PSSSL framework achieves superior performance in both quantitative and qualitative evaluations on the DDTI and TN3k datasets to State-Of-The-Art semi-supervised approaches. The code is available at https://github.com/wuliZN2020/Thyroid-Segmentation-PSSSL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在努力完成签到 ,获得积分10
刚刚
科研通AI6应助kk采纳,获得10
2秒前
沐沐1003完成签到,获得积分10
2秒前
王振凯发布了新的文献求助10
2秒前
阿符家的骡完成签到,获得积分10
3秒前
5秒前
Menand完成签到,获得积分10
6秒前
乐观期待完成签到,获得积分10
6秒前
Ranqi应助科研通管家采纳,获得10
7秒前
7秒前
xcgh应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
心想事成应助科研通管家采纳,获得10
7秒前
帅玉玉完成签到,获得积分10
7秒前
III完成签到,获得积分10
9秒前
11秒前
14秒前
Frank应助Whr采纳,获得10
14秒前
Imp发布了新的文献求助10
15秒前
李健应助王子怡采纳,获得10
16秒前
17秒前
LANER完成签到 ,获得积分10
18秒前
18秒前
crabbbb68发布了新的文献求助10
20秒前
22秒前
无尘泪完成签到,获得积分10
23秒前
ChangShengtzu完成签到 ,获得积分10
24秒前
欢喜吐司发布了新的文献求助10
25秒前
26秒前
vvvg发布了新的文献求助10
28秒前
28秒前
传奇3应助lucas采纳,获得10
29秒前
coolcat完成签到 ,获得积分10
29秒前
Hello应助无名采纳,获得10
30秒前
aliu发布了新的文献求助10
31秒前
汤钰寒发布了新的文献求助10
32秒前
33秒前
VV2VV发布了新的文献求助20
33秒前
36秒前
欢喜吐司完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565757
求助须知:如何正确求助?哪些是违规求助? 4650714
关于积分的说明 14692753
捐赠科研通 4592754
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492140
关于科研通互助平台的介绍 1463316