Pyramid Shape-Aware Semi-supervised Learning for Thyroid Nodules Segmentation in Ultrasound Images

计算机科学 分割 人工智能 棱锥(几何) 模式识别(心理学) 基本事实 甲状腺结节 特征(语言学) 图像分割 监督学习 机器学习 人工神经网络 数学 哲学 生物 遗传学 语言学 几何学 恶性肿瘤
作者
Na Zhang,Juan Liu,Meng Wu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 407-418
标识
DOI:10.1007/978-981-99-8469-5_32
摘要

The accurate segmentation of thyroid nodules in ultrasound (US) images is critical for computer-aided diagnosis of thyroid cancer. While the fully supervised methods achieve high accuracy, they require a significant amount of annotated data for training, which is both costly and time-consuming. Semi-supervised learning can address this challenge by using a limited amount of labeled data in combination with a large amount of unlabeled data. However, the existing semi-supervised segmentation approaches often fail to account for both geometric shape constraints and scale differences of objects. To address this issue, in this paper we propose a novel Pyramid Shape-aware Semi-supervised Learning (PSSSL) framework for thyroid nodules segmentation in US images, which employs a dual-task pyramid prediction network to jointly predict the Segmentation Maps (SEG) and Signed Distance Maps (SDM) of objects at different scales. Pyramid feature prediction enables better adaptation to differences in nodule size, while the SDM provides a representation that encodes richer shape features of the target. PSSSL learns from the labeled data by minimizing the discrepancy between the prediction and the ground-truth and learns from unlabeled data by minimizing the discrepancy between the predictions at different scales and the average prediction. To achieve reliable and robust segmentation, two uncertainty estimation modules are designed to emphasize reliable predictions while ignoring unreliable predictions from unlabeled data. The proposed PSSSL framework achieves superior performance in both quantitative and qualitative evaluations on the DDTI and TN3k datasets to State-Of-The-Art semi-supervised approaches. The code is available at https://github.com/wuliZN2020/Thyroid-Segmentation-PSSSL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
剋剋发布了新的文献求助10
1秒前
1秒前
友好的向日葵完成签到,获得积分10
1秒前
柏康娜完成签到,获得积分10
2秒前
3秒前
Mlwwq发布了新的文献求助10
3秒前
xuxingjie完成签到,获得积分10
3秒前
搜集达人应助ahead采纳,获得10
3秒前
多巴胺发布了新的文献求助10
3秒前
所所应助整齐的豆芽采纳,获得10
3秒前
3秒前
4秒前
Avery发布了新的文献求助10
4秒前
zyz完成签到,获得积分10
5秒前
5秒前
5秒前
寻找组织应助fun采纳,获得40
6秒前
passerby发布了新的文献求助10
6秒前
6秒前
OB发布了新的文献求助10
6秒前
6秒前
123完成签到,获得积分10
7秒前
Ava应助A_Brute采纳,获得10
7秒前
啊亮完成签到,获得积分10
7秒前
ranranran发布了新的文献求助10
7秒前
KOAS完成签到,获得积分10
7秒前
烂漫的碧萱完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
浮游应助TrDoubleE采纳,获得10
9秒前
10秒前
CodeCraft应助玄天明月采纳,获得10
10秒前
Jasper应助地球采纳,获得10
10秒前
穆思柔完成签到,获得积分10
10秒前
思源应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546153
求助须知:如何正确求助?哪些是违规求助? 4631960
关于积分的说明 14624094
捐赠科研通 4573677
什么是DOI,文献DOI怎么找? 2507699
邀请新用户注册赠送积分活动 1484361
关于科研通互助平台的介绍 1455656