A Quantum-Based Attention Mechanism in Scene Text Detection

计算机科学 失败 目标检测 人工智能 分割 模式识别(心理学) 并行计算
作者
Hao Wu,Jun Zhou,Qiong Zhang,Lei Yang,Kun Yu,Wenbo An,Juntao Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 3-14
标识
DOI:10.1007/978-981-99-8543-2_1
摘要

Attention mechanisms have provided benefits in very many visual tasks, e.g. image classification, object detection, semantic segmentation. However, few attention modules have been proposed specifically for scene text detection. We propose an attention mechanism based on Quantum-State-based Mapping (QSM) that enhances channel and spatial attention, introduces higher-order representations, and mixes contextual information. Our approach includes two attention modules: Quantum-based Convolutional Attention Module (QCAM), a plug-and-play module applicable to pre-trained text detection models; Adaptive Channel Information Transfer Module (ACTM), which replaces feature pyramids and complex networks of DBNet++ with a 35.9% reduction in FLOPs. In CNN-based methods, our QCAM achieves state-of-the-art performance on three benchmarks. Remarkably, when compared to the Transformer-based methods such as FSG, our QCAM remains competitive in F-measure on all benchmarks. Notably, QCAM has a 29.5% reduction in parameters compared to FSG, resulting in a balance between detection accuracy and efficiency. ACTM significantly improves F-measure over DBNet++ on three benchmarks, providing an alternative to feature pyramids in scene text detection. The codes, models and training logs are available at https://github.com/yws-wxs/QCAM .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛豆应助一池楼台采纳,获得10
刚刚
哭泣的金鱼完成签到,获得积分10
刚刚
1秒前
pluto应助等待冬易采纳,获得10
1秒前
duan00100发布了新的文献求助10
1秒前
姜起蛟完成签到,获得积分10
2秒前
研友_ZbM2qn应助xy采纳,获得10
2秒前
3秒前
冷艳广山发布了新的文献求助20
3秒前
4秒前
womodou发布了新的文献求助10
4秒前
姜起蛟发布了新的文献求助20
4秒前
灵巧的大山完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
shuyuan完成签到,获得积分10
6秒前
雾野与晚风完成签到,获得积分10
6秒前
辛勤靖荷完成签到,获得积分10
8秒前
zhang完成签到,获得积分10
8秒前
8秒前
执着寇发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
欢呼芷雪发布了新的文献求助10
10秒前
songge发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
田様应助Pan采纳,获得10
12秒前
双黄应助钟于采纳,获得10
13秒前
blueblue发布了新的文献求助10
13秒前
13秒前
风中尔云发布了新的文献求助10
14秒前
天天快乐应助害怕的又晴采纳,获得10
14秒前
lii发布了新的文献求助10
14秒前
16秒前
火星上的冬云完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304792
求助须知:如何正确求助?哪些是违规求助? 2938738
关于积分的说明 8489795
捐赠科研通 2613236
什么是DOI,文献DOI怎么找? 1427209
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557