HyperSINet: A Synergetic Interaction Network Combined With Convolution and Transformer for Hyperspectral Image Classification

高光谱成像 计算机科学 卷积(计算机科学) 人工智能 遥感 模式识别(心理学) 上下文图像分类 图像(数学) 人工神经网络 地质学
作者
Qixing Yu,Weibo Wei,Dantong Li,Zhenkuan Pan,Chenyu Li,Danfeng Hong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:3
标识
DOI:10.1109/tgrs.2024.3362471
摘要

In hyperspectral images (HSIs), both local and non-local features play crucial roles in classification tasks. Vision Transformer (VIT) can extract non-local features through attention mechanisms, while Convolutional Neural Networks (CNN) excel at handling local components. However, in traditional dual-branch models based on VIT and CNN, there is a lack of interaction during feature processing, leading to potential compatibility issues when merging the two types of features. In this article, we propose HyperSINet, a Synergetic Interaction Network that combines VIT and CNN to establish interaction between the two branches, enabling mutual compensation between local and non-local features during the training process and ultimately enhancing the performance of classification tasks. Specifically, we devise a pair of interactors, namely Conv2Trans and Trans2Conv, which serve as intermediaries between the two branches, enabling the VIT branch to refine its local details, while allowing the CNN branch to process larger receptive field non-local features. Typical feature Maps are implemented to visualize the function of the interactors. Furthermore, within the VIT branch, a VIT Encoder with the local mask is developed to strike a balance between emphasizing non-local features and preserving local details, while a lightweight CNN block is designed to process spectral and spatial features in the CNN branch. Extensive experiments conducted on four real-world datasets demonstrate that, under a reasonable count of parameters, HyperSINet surpasses several current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
7秒前
一个人战争完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
孙成成发布了新的文献求助10
11秒前
廖英健完成签到 ,获得积分10
12秒前
zmx123123完成签到,获得积分10
12秒前
ZZ发布了新的文献求助10
13秒前
13秒前
14秒前
yyao发布了新的文献求助30
14秒前
白潇潇发布了新的文献求助10
14秒前
Owen应助谨言采纳,获得10
15秒前
BDMAXPK发布了新的文献求助10
15秒前
16秒前
16秒前
大轩发布了新的文献求助10
16秒前
榜一大哥的负担完成签到 ,获得积分10
19秒前
科研通AI2S应助糖豆采纳,获得10
23秒前
23秒前
熱風完成签到 ,获得积分10
26秒前
柯一一应助Liucky采纳,获得10
26秒前
27秒前
科目三应助高跟鞋陈煋采纳,获得10
27秒前
彩色夜阑完成签到,获得积分10
27秒前
搜集达人应助果子采纳,获得10
27秒前
南天发布了新的文献求助30
28秒前
爆米花应助Mingtiaoxiyue采纳,获得30
28秒前
涛声依旧完成签到,获得积分10
30秒前
S.S.N完成签到 ,获得积分10
32秒前
32秒前
39秒前
40秒前
情怀应助Cici采纳,获得10
42秒前
星辰大海应助WD采纳,获得10
43秒前
果子发布了新的文献求助10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975610
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200337
捐赠科研通 3256337
什么是DOI,文献DOI怎么找? 1798246
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806357