Multimodal Brain Tumor Segmentation Boosted by Monomodal Normal Brain Images

特征(语言学) 图像分割 人工智能 脑瘤 模式识别(心理学) 深度学习 分割 计算机科学 计算机视觉 光学(聚焦) 特征提取 医学 病理 语言学 哲学 物理 光学
作者
Huabing Liu,Zhicheng Ni,Dong Nie,Dinggang Shen,Jinda Wang,Zhenyu Tang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1199-1210 被引量:1
标识
DOI:10.1109/tip.2024.3359815
摘要

Many deep learning based methods have been proposed for brain tumor segmentation. Most studies focus on deep network internal structure to improve the segmentation accuracy, while valuable external information, such as normal brain appearance, is often ignored. Inspired by the fact that radiologists often screen lesion regions with normal appearance as reference in mind, in this paper, we propose a novel deep framework for brain tumor segmentation, where normal brain images are adopted as reference to compare with tumor brain images in a learned feature space. In this way, features at tumor regions, i.e., tumor-related features, can be highlighted and enhanced for accurate tumor segmentation. It is known that routine tumor brain images are multimodal, while normal brain images are often monomodal. This causes the feature comparison a big issue, i.e., multimodal vs. monomodal. To this end, we present a new feature alignment module (FAM) to make the feature distribution of monomodal normal brain images consistent/inconsistent with multimodal tumor brain images at normal/tumor regions, making the feature comparison effective. Both public (BraTS2022) and in-house tumor brain image datasets are used to evaluate our framework. Experimental results demonstrate that for both datasets, our framework can effectively improve the segmentation accuracy and outperforms the state-of-the-art segmentation methods. Codes are available at https://github.com/hb-liu/Normal-Brain-Boost-Tumor-Segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xxx发布了新的文献求助10
刚刚
刚刚
huxiao发布了新的文献求助10
1秒前
岩松完成签到 ,获得积分10
1秒前
山橘月完成签到,获得积分10
3秒前
马马马发布了新的文献求助10
3秒前
东瓜魔法师完成签到,获得积分10
3秒前
xdedd给xdedd的求助进行了留言
4秒前
今天读书了没完成签到,获得积分10
4秒前
5秒前
汪哈七发布了新的文献求助10
6秒前
新年快乐发布了新的文献求助10
6秒前
huxiao完成签到,获得积分10
7秒前
高贵的翠曼完成签到,获得积分10
8秒前
10秒前
myn1990完成签到,获得积分20
10秒前
科研通AI2S应助热热带汤采纳,获得10
11秒前
高大的叫兽完成签到,获得积分10
11秒前
12秒前
JamesPei应助淡淡十三采纳,获得10
12秒前
灰灰完成签到,获得积分20
13秒前
香蕉觅云应助hello采纳,获得10
13秒前
13秒前
13秒前
善学以致用应助空白的黑采纳,获得10
13秒前
万能图书馆应助坚定芷烟采纳,获得10
14秒前
14秒前
sjj完成签到,获得积分20
15秒前
yalan发布了新的文献求助10
15秒前
Mr_clf完成签到,获得积分10
15秒前
852应助冷艳的凡阳采纳,获得10
15秒前
15秒前
xj完成签到,获得积分10
15秒前
思源应助不安的猫咪采纳,获得10
16秒前
17秒前
悦耳大树发布了新的文献求助10
17秒前
bkagyin应助WAKAKA采纳,获得10
17秒前
xie老板发布了新的文献求助10
17秒前
17秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169526
求助须知:如何正确求助?哪些是违规求助? 2820711
关于积分的说明 7931902
捐赠科研通 2481044
什么是DOI,文献DOI怎么找? 1321655
科研通“疑难数据库(出版商)”最低求助积分说明 633307
版权声明 602530