Multimodal Brain Tumor Segmentation Boosted by Monomodal Normal Brain Images

特征(语言学) 图像分割 人工智能 脑瘤 模式识别(心理学) 深度学习 分割 计算机科学 计算机视觉 光学(聚焦) 特征提取 医学 病理 语言学 哲学 物理 光学
作者
Huabing Liu,Zhengze Ni,Dong Nie,Dinggang Shen,Jinda Wang,Zhenyu Tang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1199-1210 被引量:8
标识
DOI:10.1109/tip.2024.3359815
摘要

Many deep learning based methods have been proposed for brain tumor segmentation. Most studies focus on deep network internal structure to improve the segmentation accuracy, while valuable external information, such as normal brain appearance, is often ignored. Inspired by the fact that radiologists often screen lesion regions with normal appearance as reference in mind, in this paper, we propose a novel deep framework for brain tumor segmentation, where normal brain images are adopted as reference to compare with tumor brain images in a learned feature space. In this way, features at tumor regions, i.e., tumor-related features, can be highlighted and enhanced for accurate tumor segmentation. It is known that routine tumor brain images are multimodal, while normal brain images are often monomodal. This causes the feature comparison a big issue, i.e., multimodal vs. monomodal. To this end, we present a new feature alignment module (FAM) to make the feature distribution of monomodal normal brain images consistent/inconsistent with multimodal tumor brain images at normal/tumor regions, making the feature comparison effective. Both public (BraTS2022) and in-house tumor brain image datasets are used to evaluate our framework. Experimental results demonstrate that for both datasets, our framework can effectively improve the segmentation accuracy and outperforms the state-of-the-art segmentation methods. Codes are available at https://github.com/hb-liu/Normal-Brain-Boost-Tumor-Segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你滴勋宗啊完成签到,获得积分10
1秒前
lihongjie完成签到,获得积分10
2秒前
汉堡包应助从容采纳,获得10
5秒前
科研通AI5应助chentle采纳,获得10
6秒前
chen完成签到,获得积分10
7秒前
9秒前
11秒前
14秒前
14秒前
15秒前
16秒前
hao123发布了新的文献求助10
16秒前
天空之城完成签到,获得积分10
17秒前
zyj发布了新的文献求助10
19秒前
古或今完成签到,获得积分10
19秒前
云云然发布了新的文献求助10
21秒前
潇洒的如松完成签到,获得积分10
21秒前
颜又菱发布了新的文献求助10
22秒前
22秒前
27秒前
任大师兄应助古或今采纳,获得10
29秒前
就是爱问完成签到,获得积分10
33秒前
33秒前
所所应助janice采纳,获得10
35秒前
于于于发布了新的文献求助10
35秒前
36秒前
39秒前
hihi发布了新的文献求助10
41秒前
42秒前
托丽莲睡拿完成签到,获得积分10
44秒前
归诚发布了新的文献求助10
44秒前
Eatanicecube完成签到,获得积分10
46秒前
46秒前
47秒前
科研通AI5应助ze采纳,获得10
49秒前
50秒前
51秒前
HEIKU应助Fx采纳,获得10
52秒前
53秒前
55秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735888
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016230
捐赠科研通 2996269
什么是DOI,文献DOI怎么找? 1644011
邀请新用户注册赠送积分活动 781681
科研通“疑难数据库(出版商)”最低求助积分说明 749425