PINN surrogate of Li-ion battery models for parameter inference. Part I: Implementation and multi-fidelity hierarchies for the single-particle model

电池(电) 替代模型 推论 校准 计算机科学 贝叶斯推理 人工神经网络 吞吐量 人工智能 机器学习 贝叶斯概率 物理 功率(物理) 电信 量子力学 无线
作者
Malik Hassanaly,Peter J. Weddle,Ryan King,Subhayan De,Alireza Doostan,Corey R. Randall,Eric J. Dufek,Andrew M. Colclasure,Kandler Smith
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2312.17329
摘要

To plan and optimize energy storage demands that account for Li-ion battery aging dynamics, techniques need to be developed to diagnose battery internal states accurately and rapidly. This study seeks to reduce the computational resources needed to determine a battery's internal states by replacing physics-based Li-ion battery models -- such as the single-particle model (SPM) and the pseudo-2D (P2D) model -- with a physics-informed neural network (PINN) surrogate. The surrogate model makes high-throughput techniques, such as Bayesian calibration, tractable to determine battery internal parameters from voltage responses. This manuscript is the first of a two-part series that introduces PINN surrogates of Li-ion battery models for parameter inference (i.e., state-of-health diagnostics). In this first part, a method is presented for constructing a PINN surrogate of the SPM. A multi-fidelity hierarchical training, where several neural nets are trained with multiple physics-loss fidelities is shown to significantly improve the surrogate accuracy when only training on the governing equation residuals. The implementation is made available in a companion repository (https://github.com/NREL/pinnstripes). The techniques used to develop a PINN surrogate of the SPM are extended in Part II for the PINN surrogate for the P2D battery model, and explore the Bayesian calibration capabilities of both surrogates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助rff666采纳,获得10
1秒前
俭朴的访云完成签到 ,获得积分10
2秒前
杨小么发布了新的文献求助10
5秒前
Lucas应助莫茹采纳,获得10
5秒前
5秒前
MT完成签到 ,获得积分10
6秒前
6秒前
笑而不语完成签到 ,获得积分10
7秒前
JJ发布了新的文献求助10
10秒前
limiao发布了新的文献求助10
11秒前
阿迪完成签到,获得积分10
11秒前
SYLH应助fy采纳,获得20
13秒前
14秒前
小马甲应助haku采纳,获得10
14秒前
zorro3574完成签到,获得积分10
16秒前
17秒前
苏苏应助依依采纳,获得30
17秒前
贪玩的访风完成签到 ,获得积分10
18秒前
Jasper应助ZM采纳,获得10
20秒前
dxs发布了新的文献求助10
20秒前
顾越完成签到,获得积分10
20秒前
无花果应助马鑫燚采纳,获得10
22秒前
爱吃猫的鱼完成签到,获得积分10
24秒前
26秒前
SciGPT应助ab采纳,获得10
26秒前
Orange应助jouholly采纳,获得10
26秒前
27秒前
28秒前
29秒前
30秒前
30秒前
30秒前
30秒前
33秒前
ZM发布了新的文献求助10
34秒前
宁人发布了新的文献求助30
35秒前
35秒前
念姬发布了新的文献求助10
36秒前
善学以致用应助mk91采纳,获得10
37秒前
haku发布了新的文献求助10
38秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962917
求助须知:如何正确求助?哪些是违规求助? 3508861
关于积分的说明 11143755
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791689
邀请新用户注册赠送积分活动 873065
科研通“疑难数据库(出版商)”最低求助积分说明 803579