Suicide Tendency Prediction from Psychiatric Notes Using Transformer Models

随机森林 机器学习 自杀意念 自杀未遂 人工智能 心理健康 毒物控制 自杀预防 召回 二元分类 计算机科学 逻辑回归 人为因素与人体工程学 心理学 精神科 支持向量机 医学 医疗急救 认知心理学
作者
Zehan Li,Iqra Ameer,Yan Hu,Ahmed Abdelhameed,Cui Tao,Salih Selek,Hua Xu
标识
DOI:10.1109/ichi57859.2023.00074
摘要

Suicide tendency is a fluid and multifaceted process that involves various stages, including suicidal ideation, planning, and attempting suicide. The use of electronic health records (EHR) and predictive algorithms has provided unprecedented opportunities for suicide research, but standard diagnosis codes for suicide tendencies are not always readily available in health records, resulting in low sensitivity when identifying suicide tendencies using structured data. Prior studies have focused on developing binary classification models to identify the presence of single suicide tendencies, such as suicide ideation or suicide attempt. In this study, we have worked on multiclass suicide tendency problem. We conducted a series of experiments to predict multiple suicide tendencies from psychiatric evaluation notes using classic machine learning models and pretrained transformer models. We manually annotated 1,000 Initial Psychiatric Evaluation (IPE) notes using a set of three classes (suicide ideation, suicide attempt, and non-suicidal). The performance of these models were evaluated using weighted F1 score, precision, recall, and accuracy. The Bio-ClinicalBERT model achieved the best performance for multiclass classification, with a weighted F1 score of 0.78, outperforming the classic machine learning models. Logistic regression and random forest models achieved comparable performance to state-of-the-art models in binary classification tasks with F1 score and accuracy of 0.93. The study contributes to mental health informatics with a novel Natural Language Paper (NLP) approach and psychiatric dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李爱国应助彩色黑米采纳,获得10
刚刚
Akim应助你好呀采纳,获得10
刚刚
Jasper应助你好呀采纳,获得10
1秒前
充电宝应助你好呀采纳,获得10
1秒前
丘比特应助你好呀采纳,获得10
1秒前
上官若男应助你好呀采纳,获得10
1秒前
Ava应助你好呀采纳,获得10
1秒前
张子陌完成签到 ,获得积分10
1秒前
ding应助你好呀采纳,获得10
1秒前
科研通AI6应助你好呀采纳,获得10
1秒前
小蘑菇应助你好呀采纳,获得10
1秒前
情怀应助你好呀采纳,获得10
1秒前
Owen应助蛋筒采纳,获得10
2秒前
小怪发布了新的文献求助10
2秒前
不想睡觉发布了新的文献求助10
3秒前
今后应助无聊的夜山采纳,获得10
3秒前
活力萤完成签到,获得积分10
3秒前
pjy发布了新的文献求助10
3秒前
makimaki应助小沈采纳,获得10
4秒前
4秒前
baobao完成签到,获得积分10
5秒前
补丁发布了新的文献求助10
6秒前
6秒前
7秒前
专注的问寒应助洪文采纳,获得20
8秒前
9秒前
小王爱摆烂完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
mj完成签到,获得积分10
11秒前
11秒前
大模型应助友好的向日葵采纳,获得10
11秒前
雪蛤完成签到,获得积分10
11秒前
酥酥完成签到,获得积分10
12秒前
渡花应助Su采纳,获得10
12秒前
万能图书馆应助小怪采纳,获得10
12秒前
笨笨松完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632882
求助须知:如何正确求助?哪些是违规求助? 4728147
关于积分的说明 14984358
捐赠科研通 4790889
什么是DOI,文献DOI怎么找? 2558632
邀请新用户注册赠送积分活动 1519067
关于科研通互助平台的介绍 1479370