Suicide Tendency Prediction from Psychiatric Notes Using Transformer Models

随机森林 机器学习 自杀意念 自杀未遂 人工智能 心理健康 毒物控制 自杀预防 召回 二元分类 计算机科学 逻辑回归 人为因素与人体工程学 心理学 精神科 支持向量机 医学 医疗急救 认知心理学
作者
Zehan Li,Iqra Ameer,Yan Hu,Ahmed Abdelhameed,Cui Tao,Salih Selek,Hua Xu
标识
DOI:10.1109/ichi57859.2023.00074
摘要

Suicide tendency is a fluid and multifaceted process that involves various stages, including suicidal ideation, planning, and attempting suicide. The use of electronic health records (EHR) and predictive algorithms has provided unprecedented opportunities for suicide research, but standard diagnosis codes for suicide tendencies are not always readily available in health records, resulting in low sensitivity when identifying suicide tendencies using structured data. Prior studies have focused on developing binary classification models to identify the presence of single suicide tendencies, such as suicide ideation or suicide attempt. In this study, we have worked on multiclass suicide tendency problem. We conducted a series of experiments to predict multiple suicide tendencies from psychiatric evaluation notes using classic machine learning models and pretrained transformer models. We manually annotated 1,000 Initial Psychiatric Evaluation (IPE) notes using a set of three classes (suicide ideation, suicide attempt, and non-suicidal). The performance of these models were evaluated using weighted F1 score, precision, recall, and accuracy. The Bio-ClinicalBERT model achieved the best performance for multiclass classification, with a weighted F1 score of 0.78, outperforming the classic machine learning models. Logistic regression and random forest models achieved comparable performance to state-of-the-art models in binary classification tasks with F1 score and accuracy of 0.93. The study contributes to mental health informatics with a novel Natural Language Paper (NLP) approach and psychiatric dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助rakuyo采纳,获得10
1秒前
孙非发布了新的文献求助10
1秒前
2秒前
Akim应助暗器采纳,获得30
2秒前
3秒前
4秒前
小东发布了新的文献求助10
5秒前
sz完成签到,获得积分10
6秒前
可达完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
传奇3应助麻匪采纳,获得10
8秒前
9秒前
威武又柔发布了新的文献求助10
9秒前
yu完成签到,获得积分10
10秒前
PEAR发布了新的文献求助10
10秒前
远望发布了新的文献求助10
10秒前
搞怪莫茗应助梦想采纳,获得10
10秒前
英姑应助wjx采纳,获得10
11秒前
深情安青应助wjx采纳,获得20
11秒前
打打应助wjx采纳,获得10
11秒前
CodeCraft应助wjx采纳,获得10
11秒前
脑洞疼应助wjx采纳,获得10
11秒前
CCCcc完成签到,获得积分10
11秒前
11秒前
李健应助满意水瑶采纳,获得10
12秒前
sz发布了新的文献求助10
12秒前
wu发布了新的文献求助10
13秒前
15秒前
ypyue发布了新的文献求助10
15秒前
赘婿应助lsn采纳,获得10
16秒前
研友_VZG7GZ应助sunset5min采纳,获得10
18秒前
威武又柔完成签到,获得积分10
18秒前
朱巴子完成签到,获得积分10
19秒前
善学以致用应助wjx采纳,获得10
20秒前
完美世界应助wjx采纳,获得20
20秒前
Ava应助wjx采纳,获得10
20秒前
汉堡包应助wjx采纳,获得10
20秒前
Orange应助wjx采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019