已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Multicenter Risk Model to Predict Right Ventricular Failure After Mechanical Circulatory Support

医学 队列 心脏病学 内科学 回顾性队列研究 心室辅助装置 心力衰竭 外科
作者
Iosif Taleb,Christos P. Kyriakopoulos,Robyn Fong,Naila Ijaz,Zachary Demertzis,Konstantinos Sideris,Omar Wever‐Pinzon,Antigone Koliopoulou,Michael Bonios,Rohan Shad,Adithya Peruri,Thomas C. Hanff,Elizabeth Dranow,Theodoros V. Giannouchos,Ethan Krauspe,Cyril Zakka,Daniel Tang,Hassan Nemeh,Josef Stehlik,James C. Fang
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:9 (3): 272-272 被引量:17
标识
DOI:10.1001/jamacardio.2023.5372
摘要

Importance The existing models predicting right ventricular failure (RVF) after durable left ventricular assist device (LVAD) support might be limited, partly due to lack of external validation, marginal predictive power, and absence of intraoperative characteristics. Objective To derive and validate a risk model to predict RVF after LVAD implantation. Design, Setting, and Participants This was a hybrid prospective-retrospective multicenter cohort study conducted from April 2008 to July 2019 of patients with advanced heart failure (HF) requiring continuous-flow LVAD. The derivation cohort included patients enrolled at 5 institutions. The external validation cohort included patients enrolled at a sixth institution within the same period. Study data were analyzed October 2022 to August 2023. Exposures Study participants underwent chronic continuous-flow LVAD support. Main Outcome and Measures The primary outcome was RVF incidence, defined as the need for RV assist device or intravenous inotropes for greater than 14 days. Bootstrap imputation and adaptive least absolute shrinkage and selection operator variable selection techniques were used to derive a predictive model. An RVF risk calculator (STOP-RVF) was then developed and subsequently externally validated, which can provide personalized quantification of the risk for LVAD candidates. Its predictive accuracy was compared with previously published RVF scores. Results The derivation cohort included 798 patients (mean [SE] age, 56.1 [13.2] years; 668 male [83.7%]). The external validation cohort included 327 patients. RVF developed in 193 of 798 patients (24.2%) in the derivation cohort and 107 of 327 patients (32.7%) in the validation cohort. Preimplant variables associated with postoperative RVF included nonischemic cardiomyopathy, intra-aortic balloon pump, microaxial percutaneous left ventricular assist device/venoarterial extracorporeal membrane oxygenation, LVAD configuration, Interagency Registry for Mechanically Assisted Circulatory Support profiles 1 to 2, right atrial/pulmonary capillary wedge pressure ratio, use of angiotensin-converting enzyme inhibitors, platelet count, and serum sodium, albumin, and creatinine levels. Inclusion of intraoperative characteristics did not improve model performance. The calculator achieved a C statistic of 0.75 (95% CI, 0.71-0.79) in the derivation cohort and 0.73 (95% CI, 0.67-0.80) in the validation cohort. Cumulative survival was higher in patients composing the low-risk group (estimated <20% RVF risk) compared with those in the higher-risk groups. The STOP-RVF risk calculator exhibited a significantly better performance than commonly used risk scores proposed by Kormos et al (C statistic, 0.58; 95% CI, 0.53-0.63) and Drakos et al (C statistic, 0.62; 95% CI, 0.57-0.67). Conclusions and Relevance Implementing routine clinical data, this multicenter cohort study derived and validated the STOP-RVF calculator as a personalized risk assessment tool for the prediction of RVF and RVF-associated all-cause mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅的面包完成签到,获得积分10
2秒前
苹果惠完成签到,获得积分10
2秒前
4秒前
jokerhoney完成签到,获得积分0
7秒前
10秒前
10秒前
13秒前
14秒前
16秒前
小小完成签到 ,获得积分10
18秒前
yanxi发布了新的文献求助10
19秒前
泥娃娃完成签到,获得积分10
19秒前
李健的小迷弟应助susu采纳,获得30
22秒前
不安青牛应助闪闪的熠彤采纳,获得20
24秒前
几一昂完成签到 ,获得积分10
24秒前
NexusExplorer应助英勇的天奇采纳,获得10
25秒前
HXY给HXY的求助进行了留言
28秒前
28秒前
顾矜应助Dopamine采纳,获得10
32秒前
yanxi完成签到,获得积分10
33秒前
34秒前
35秒前
35秒前
QJ0发布了新的文献求助10
40秒前
bless发布了新的文献求助10
40秒前
隐形曼青应助大大怪将军采纳,获得10
40秒前
40秒前
43秒前
大大怪将军完成签到,获得积分10
45秒前
喜悦的小土豆完成签到 ,获得积分10
47秒前
还是速度点完成签到,获得积分10
47秒前
51秒前
不安青牛应助淡然的念珍采纳,获得10
55秒前
疯狂的寻琴完成签到 ,获得积分10
55秒前
57秒前
无私的含海完成签到,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
科研通AI6应助黑暗与黎明采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469870
求助须知:如何正确求助?哪些是违规求助? 4572878
关于积分的说明 14337487
捐赠科研通 4499774
什么是DOI,文献DOI怎么找? 2465296
邀请新用户注册赠送积分活动 1453726
关于科研通互助平台的介绍 1428259