Object Detection of Remote Sensing Image Based on Multi-Scale Feature Fusion and Attention Mechanism

计算机科学 增采样 特征(语言学) 融合机制 人工智能 目标检测 棱锥(几何) 核(代数) 模式识别(心理学) 特征提取 计算机视觉 数据挖掘 图像(数学) 融合 哲学 语言学 几何学 数学 组合数学 脂质双层融合
作者
Zuoqiang Du,Yuan Liang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 8619-8632 被引量:7
标识
DOI:10.1109/access.2024.3352601
摘要

In view of the small size and dense distribution of remote sensing image targets, this paper adds a detection head P2 specifically for small-scale targets on the basis of the three detection layers of the original YOLOv5 model, and involves the shallow high-resolution feature map in the subsequent multi-scale feature fusion module. The problem of losing the key feature information of the small-scale target in the process of multiple downsampling is effectively avoided. Firstly, an enhanced multi-scale feature fusion pyramid network DSI-FPN is designed. The FPN+PAN network is optimized by using DepthwiseSparable Convolution and Involution operators with fewer parameters and computations, as well as a spatial attention mechanism to generate feature graphs with richer information for network detection tasks. Secondly, we propose an adaptive channel spatial attention mechanism SCBAM, which introduces a self-attention mechanism into CBAM module to add non-local information to the interaction that originally had only local information, breaks the convolution kernel limit, expands the model receptive field, and improves the feature expression ability of the model. Thirdly, in order to solve the problem of insufficient computing power when deploying the target detector for equipment, we propose a network knowledge distillation framework for joint teachers based on the feature layer. The distillation loss of teacher is designed, and the trend of student online learning is adjusted dynamically by balancing the contributions of teacher network and truth value. The detection accuracy of the student network is obviously improved, and the parameters and model size of the network are effectively reduced. Finally, Comparing with other remote sensing image object detection methods, the experimental results show that the approach presented has better detection effect for small-scale targets of remote sensing images under different lighting conditions. The detection accuracy reached 43.9%, and 7.4% higher than that of the original model. After knowledge distillation, the model parameters are reduced to 1/3 of the original, and the detection accuracy is 40.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qmhx完成签到,获得积分10
1秒前
崔尔蓉完成签到,获得积分10
1秒前
MrChew完成签到 ,获得积分10
1秒前
lff发布了新的文献求助10
1秒前
须眉交白完成签到,获得积分10
3秒前
4秒前
ng发布了新的文献求助10
5秒前
RYAN完成签到 ,获得积分10
5秒前
Xiao完成签到,获得积分10
5秒前
霁昕完成签到 ,获得积分10
6秒前
大模型应助xxxxx采纳,获得10
6秒前
爱学习的悦悦子完成签到 ,获得积分10
7秒前
雨恋凡尘完成签到,获得积分10
8秒前
月月完成签到,获得积分10
9秒前
苗条绝义发布了新的文献求助10
9秒前
蛀牙牙完成签到,获得积分10
9秒前
10秒前
问津完成签到,获得积分20
12秒前
ZhihaoZhu完成签到 ,获得积分10
14秒前
小春完成签到,获得积分10
16秒前
Nidhogg完成签到,获得积分10
17秒前
lff完成签到,获得积分10
18秒前
如是空者完成签到 ,获得积分10
19秒前
XIEMIN完成签到,获得积分10
19秒前
bkagyin应助八九采纳,获得10
21秒前
李建勋完成签到,获得积分10
22秒前
24秒前
qian完成签到,获得积分10
26秒前
26秒前
27秒前
晚风发布了新的文献求助10
27秒前
丘比特应助swordlee采纳,获得10
27秒前
冬雪完成签到 ,获得积分10
28秒前
直率翠绿完成签到,获得积分10
29秒前
任平生完成签到 ,获得积分10
29秒前
流口水完成签到,获得积分10
30秒前
深情安青应助tg2024采纳,获得10
30秒前
xxxxx发布了新的文献求助10
31秒前
八九完成签到,获得积分10
32秒前
唐唐完成签到,获得积分10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555910
求助须知:如何正确求助?哪些是违规求助? 3131507
关于积分的说明 9391334
捐赠科研通 2831220
什么是DOI,文献DOI怎么找? 1556405
邀请新用户注册赠送积分活动 726554
科研通“疑难数据库(出版商)”最低求助积分说明 715890