Knowledge-based dynamic prompt learning for multi-label disease diagnosis

计算机科学 机器学习 人工智能 领域知识 领域(数学分析) 深度学习 源代码 领域(数学) 数学分析 数学 纯数学 操作系统
作者
Jing Xie,Xin Li,Ye Yuan,Yi Guan,Jingchi Jiang,Xitong Guo,Xin Peng
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111395-111395 被引量:4
标识
DOI:10.1016/j.knosys.2024.111395
摘要

Pretrained language models (PLMs) have been developed rapidly which establish impressive performance on many open-domain downstream tasks. However, conducting these pretrained models directly without additional network architectures on special domain tasks like multi-label disease diagnosis cannot perform well. Recently, prompt learning has been a new paradigm in PLM field which is more convenient and well-performed than the traditional fine-tuning approach for different domain tasks. However, prompt engineering is challenging because it takes time and experience. In this paper, we propose a new prompt learning method named Knowledge-based Dynamic PrompT (KBDPT) to deal with these problems. Firstly, we import medical knowledge into PLMs by prompt templates which make results of the disease diagnosis more reasonable and qualified. Compared with the fine-tuning approach, this method needs fewer trainable parameters and less training data but achieve better performance. Secondly, unlike most existing pre-defined prompt methods, KBDPT dynamically generates prompts based on personal medical information and a large-scale medical knowledge graph, which can provide more valuable guidance information for disease diagnosis. Lastly, the proposed model also ensembles multiple prompts from all possible diseases to introduce more knowledge and obtain differential diagnosis results. Experiments of multi-label disease diagnosis are conduct on three real-world EMR datasets. Results demonstrate that our model can be used in various pretrained models and outperform both classical deep learning methods and fine-tuning PLMs. The source code of our proposed model has been released at: https://github.com/loxs123/KBDPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研民工完成签到,获得积分20
1秒前
明亮无颜发布了新的文献求助20
3秒前
凌晨四点发布了新的文献求助30
4秒前
chosmos发布了新的文献求助10
4秒前
5秒前
科目三应助zhaoyuqing采纳,获得10
6秒前
Hello应助糊糊采纳,获得10
6秒前
eerrttyyuu发布了新的文献求助10
7秒前
7秒前
7秒前
空想家完成签到,获得积分10
7秒前
9秒前
1122完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助chosmos采纳,获得10
10秒前
10秒前
852应助zzz采纳,获得10
11秒前
12秒前
12秒前
锐哥发布了新的文献求助10
12秒前
空想家发布了新的文献求助10
13秒前
13秒前
司空剑封完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
ramsey33发布了新的文献求助10
16秒前
愿景完成签到,获得积分10
17秒前
胡可发布了新的文献求助10
17秒前
18秒前
18秒前
香蕉觅云应助Kenneyhahaha采纳,获得10
20秒前
21秒前
carly发布了新的文献求助10
21秒前
22秒前
天天快乐应助锐哥采纳,获得10
22秒前
haiwei完成签到 ,获得积分10
22秒前
23秒前
23秒前
24秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3325288
求助须知:如何正确求助?哪些是违规求助? 2955988
关于积分的说明 8578548
捐赠科研通 2633885
什么是DOI,文献DOI怎么找? 1441560
科研通“疑难数据库(出版商)”最低求助积分说明 667885
邀请新用户注册赠送积分活动 654600