DiffTAD: Denoising diffusion probabilistic models for vehicle trajectory anomaly detection

计算机科学 弹道 异常检测 人工智能 生成模型 模式识别(心理学) 算法 机器学习 生成语法 物理 天文
作者
Chaoneng Li,Guanwen Feng,Yunan Li,Ruyi Liu,Qiguang Miao,Liang Chang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:286: 111387-111387 被引量:14
标识
DOI:10.1016/j.knosys.2024.111387
摘要

Vehicle trajectory anomaly detection plays an essential role in the fields of traffic video surveillance, autonomous driving navigation, and taxi fraud detection. Deep generative models have been shown to be promising solutions for anomaly detection, avoiding the costs involved in manual labeling. However, existing popular generative models such as Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs) are often plagued by training instability, mode collapse, and poor sample quality. To resolve the dilemma, we present DiffTAD, a novel vehicle trajectory anomaly detection framework based on the emerging diffusion models. DiffTAD formalizes anomaly detection as a noisy-to-normal process that progressively adds noise to the vehicle trajectory until the path is corrupted to pure Gaussian noise. The core idea of our framework is to devise deep neural networks to learn the reverse of the diffusion process and to detect anomalies by comparing the difference between a query trajectory and its reconstruction. DiffTAD is a parameterized Markov chain trained with variational inference and allows the mean square error to optimize the reweighted variational lower bound. In addition, DiffTAD integrates decoupled Transformer-based temporal and spatial encoders to model the temporal dependencies and spatial interactions among vehicles in the diffusion models. Experiments on the real-world trajectory dataset TRAFFIC demonstrate that our DiffTAD achieves significant improvements over existing state-of-the-art methods, with the maximum enhancements reaching 25.87% and 35.59% in terms of AUC and F1. While on the synthetic datasets CROSS, SynTra, and MAAD, the maximum improvements in AUC/F1 are 27.47%/38.56%, 25.38%/31.42%, and 58.22%/50.04%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫川发布了新的文献求助30
刚刚
1秒前
1秒前
2秒前
yyy发布了新的文献求助10
3秒前
Wdw2236发布了新的文献求助10
3秒前
zhangmbit完成签到,获得积分10
3秒前
3秒前
情怀应助zeng采纳,获得10
5秒前
5秒前
小聋包完成签到,获得积分10
6秒前
羊羊羊完成签到,获得积分10
6秒前
Z2WWS32发布了新的文献求助10
7秒前
1028181661发布了新的文献求助10
7秒前
jijijibibibi完成签到,获得积分10
8秒前
香蕉觅云应助坚强幼晴采纳,获得10
8秒前
9秒前
我不爱池鱼完成签到,获得积分0
10秒前
CQJ发布了新的文献求助30
10秒前
10秒前
木印天发布了新的文献求助10
11秒前
12秒前
12秒前
LL完成签到,获得积分10
12秒前
guoguoguo发布了新的文献求助10
13秒前
李爱国应助科研民工Jay采纳,获得10
13秒前
酷炫翠桃举报时尚的傲霜求助涉嫌违规
13秒前
灰太狼大王完成签到,获得积分10
14秒前
111111完成签到,获得积分10
15秒前
Longlong应助wsll采纳,获得10
15秒前
15秒前
15秒前
ABC发布了新的文献求助10
16秒前
16秒前
聪慧的草丛发布了新的文献求助100
17秒前
酷波er应助勇往直前采纳,获得10
18秒前
20秒前
坚强幼晴发布了新的文献求助10
20秒前
WWWAA发布了新的文献求助10
21秒前
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964046
求助须知:如何正确求助?哪些是违规求助? 3509893
关于积分的说明 11149525
捐赠科研通 3243734
什么是DOI,文献DOI怎么找? 1792182
邀请新用户注册赠送积分活动 873628
科研通“疑难数据库(出版商)”最低求助积分说明 803839