DiffTAD: Denoising diffusion probabilistic models for vehicle trajectory anomaly detection

计算机科学 弹道 异常检测 人工智能 生成模型 模式识别(心理学) 算法 机器学习 生成语法 物理 天文
作者
Chaoneng Li,Guanwen Feng,Yunan Li,Ruyi Liu,Qiguang Miao,Liang Chang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111387-111387 被引量:19
标识
DOI:10.1016/j.knosys.2024.111387
摘要

Vehicle trajectory anomaly detection plays an essential role in the fields of traffic video surveillance, autonomous driving navigation, and taxi fraud detection. Deep generative models have been shown to be promising solutions for anomaly detection, avoiding the costs involved in manual labeling. However, existing popular generative models such as Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs) are often plagued by training instability, mode collapse, and poor sample quality. To resolve the dilemma, we present DiffTAD, a novel vehicle trajectory anomaly detection framework based on the emerging diffusion models. DiffTAD formalizes anomaly detection as a noisy-to-normal process that progressively adds noise to the vehicle trajectory until the path is corrupted to pure Gaussian noise. The core idea of our framework is to devise deep neural networks to learn the reverse of the diffusion process and to detect anomalies by comparing the difference between a query trajectory and its reconstruction. DiffTAD is a parameterized Markov chain trained with variational inference and allows the mean square error to optimize the reweighted variational lower bound. In addition, DiffTAD integrates decoupled Transformer-based temporal and spatial encoders to model the temporal dependencies and spatial interactions among vehicles in the diffusion models. Experiments on the real-world trajectory dataset TRAFFIC demonstrate that our DiffTAD achieves significant improvements over existing state-of-the-art methods, with the maximum enhancements reaching 25.87% and 35.59% in terms of AUC and F1. While on the synthetic datasets CROSS, SynTra, and MAAD, the maximum improvements in AUC/F1 are 27.47%/38.56%, 25.38%/31.42%, and 58.22%/50.04%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
skr完成签到,获得积分10
刚刚
Disguise完成签到,获得积分10
1秒前
安静秋柔发布了新的文献求助10
1秒前
求求完成签到 ,获得积分10
1秒前
卑微小王发布了新的文献求助10
1秒前
无辜的笙完成签到,获得积分10
1秒前
小小雨泪完成签到,获得积分10
2秒前
兴奋蘑菇发布了新的文献求助10
2秒前
李卓霖完成签到,获得积分10
3秒前
jiao完成签到,获得积分10
3秒前
3秒前
刘唐荣发布了新的文献求助10
4秒前
4秒前
feishi发布了新的文献求助10
4秒前
不退发布了新的文献求助10
5秒前
风笑完成签到,获得积分10
5秒前
李卓霖发布了新的文献求助20
6秒前
箫涵完成签到,获得积分10
6秒前
6秒前
认真de于发布了新的文献求助30
7秒前
赘婿应助张张张采纳,获得10
7秒前
7秒前
天气预报完成签到,获得积分10
7秒前
7秒前
NexusExplorer应助ysxl采纳,获得10
7秒前
7秒前
张桂彬完成签到,获得积分20
8秒前
LULU完成签到,获得积分10
8秒前
rain完成签到,获得积分10
8秒前
隐形曼青应助yiqi采纳,获得10
8秒前
搞怪城发布了新的文献求助10
8秒前
鲍勃完成签到,获得积分10
8秒前
Yan完成签到,获得积分10
8秒前
8秒前
Chien发布了新的文献求助20
8秒前
yiheng完成签到,获得积分10
9秒前
小宋娘亲完成签到 ,获得积分10
9秒前
ARES2发布了新的文献求助20
9秒前
不爱学习完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5395898
求助须知:如何正确求助?哪些是违规求助? 4516372
关于积分的说明 14059288
捐赠科研通 4428272
什么是DOI,文献DOI怎么找? 2432028
邀请新用户注册赠送积分活动 1424218
关于科研通互助平台的介绍 1403436