A novel empirical model for predicting the carbon dioxide emission of a gas turbine power plant

气体压缩机 二氧化碳 相对湿度 环境科学 燃烧 温室气体 质量流 总压比 体积流量 入口 工业气体 涡轮机 核工程 化学 气象学 热力学 机械工程 工程类 生态学 物理 有机化学 生物
作者
Henry O. Egware,Collins C. Kwasi-Effah
出处
期刊:Heliyon [Elsevier BV]
卷期号:9 (3): e14645-e14645 被引量:4
标识
DOI:10.1016/j.heliyon.2023.e14645
摘要

Carbon dioxide (CO2) is a major greenhouse gas released by gas turbine power plants that is hazardous to the environment. Hence, it is vital to investigate the operational conditions that influence its emissions. Various research papers have utilized a variety of techniques to estimate CO2 emissions from fuel combustion in various power plants without taking into account the environmental operational characteristics which in turn may have a significant effect on the obtained output values. Therefore, the purpose of this research is to assess the carbon dioxide emissions while considering both external and internal functioning characteristics. In this paper, a novel empirical model for predicting the feasible amount of carbon dioxide emitted from a gas turbine power plant was developed based on ambient temperature, ambient relative humidity, compressor pressure ratio, turbine inlet temperature and the exhaust gas mass flow rate. The predictive model developed shows that the mass flow rate of CO2 emitted has a linear relationship with the turbine inlet temperature to ambient air temperature ratio, ambient relative humidity, compressor pressure ratio, and exhaust gas mass flow rate with a determination coefficient (R2) of 0.998. Results obtained shows that rise in ambient air temperature and air fuel ratio led to increase in CO2 emission, while increase in ambient relative humidity and compressor pressure ratio resulted in reduction of CO2 emission. Furthermore, the average emission of CO2 obtained for the gas turbine power plant was 644.893kgCO2/MWh and 634, 066, 348.44kgCO2/yr, of which the latter is within the guaranteed values of 726, 000, 000 kgCO2/yr. Thus, the model can be utilized to perform an optimal study for CO2 reduction in gas turbine power plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
烟花应助北西东采纳,获得10
1秒前
我是老大应助美丽的不凡采纳,获得10
1秒前
周日不上发条完成签到,获得积分10
1秒前
四辈完成签到,获得积分10
1秒前
GJL发布了新的文献求助10
1秒前
2秒前
温婉的钢铁侠完成签到,获得积分10
2秒前
Jasper应助阿伟爱打球采纳,获得10
2秒前
3秒前
寡妇哥完成签到 ,获得积分10
3秒前
3秒前
zcl发布了新的文献求助10
4秒前
Orange应助####采纳,获得10
4秒前
5秒前
wcs65948完成签到,获得积分10
6秒前
平淡夏云完成签到,获得积分10
6秒前
6秒前
善学以致用应助源源采纳,获得10
7秒前
渤海少年发布了新的文献求助10
7秒前
上官若男应助仔仔仔平采纳,获得10
7秒前
Ava应助局内人采纳,获得10
7秒前
单薄的凡灵完成签到,获得积分10
7秒前
吉吉国王的跟班完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
康康完成签到,获得积分10
9秒前
yuting发布了新的文献求助30
9秒前
甜蜜的盼望完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
铁柱xh完成签到 ,获得积分10
10秒前
10秒前
漂亮十三关注了科研通微信公众号
10秒前
羊蓝蓝蓝完成签到,获得积分20
10秒前
zhenjl完成签到,获得积分20
10秒前
王贺发布了新的文献求助10
10秒前
zjh发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585432
求助须知:如何正确求助?哪些是违规求助? 4002122
关于积分的说明 12389406
捐赠科研通 3678232
什么是DOI,文献DOI怎么找? 2027162
邀请新用户注册赠送积分活动 1060707
科研通“疑难数据库(出版商)”最低求助积分说明 947227