Differentiating individuals through the chemical composition of their fingermarks

生物识别 计算机科学 人工智能
作者
Marie Gorka,Aurélien Thomas,Andy Bécue
出处
期刊:Forensic Science International [Elsevier]
卷期号:346: 111645-111645 被引量:1
标识
DOI:10.1016/j.forsciint.2023.111645
摘要

Fingermark patterns are one of the oldest means of biometric identification. During this last decade, the molecules that constitute the fingermark residue have gained interest among the forensic research community to gain additional intelligence regarding its donor profile including its gender, age, lifestyle or even its pathological state. In this work, the molecular composition of fingermarks have been studied to monitor the variability between donors and to explore its capacity to differentiate individuals using supervised multi-class classification models. Over one year, fingermarks from thirteen donors have been analysed by Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging (n = 716) and mined by different machine learning approaches. We demonstrate the potential of the fingermark chemical composition to help differentiating individuals with an accuracy between 80% and 96% depending on the period of sample collection for each donor and size of the pool of donors. It would be premature at this stage to transpose the results of this research to real cases, however the conclusions of this study can provide a better understanding of the variations of the chemical composition of the fingermark residue in between individuals over long periods and help clarifying the notion of donorship.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
太空完成签到,获得积分10
1秒前
2秒前
leemiii完成签到 ,获得积分10
3秒前
3秒前
3秒前
纪你巴发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
zhuzhu发布了新的文献求助10
6秒前
刘英岑发布了新的文献求助10
6秒前
kelakola完成签到,获得积分10
7秒前
7秒前
恰逢发布了新的文献求助10
7秒前
科研通AI6应助研友_Lmg01Z采纳,获得10
7秒前
guojingjing发布了新的文献求助10
7秒前
8秒前
赘婿应助monkey采纳,获得10
8秒前
8秒前
科研之家完成签到,获得积分10
9秒前
9秒前
ZZZ完成签到,获得积分10
10秒前
寒霜扬名完成签到 ,获得积分10
10秒前
10秒前
小蘑菇应助王梦秋采纳,获得10
11秒前
酷波er应助小李爱查文献采纳,获得10
12秒前
万能图书馆应助陈陈采纳,获得10
13秒前
perseverance发布了新的文献求助10
13秒前
13秒前
不止夏天发布了新的文献求助10
14秒前
seattle完成签到,获得积分10
14秒前
第七兵团司令完成签到,获得积分10
14秒前
16秒前
谷云应助guojingjing采纳,获得10
16秒前
如如完成签到,获得积分10
16秒前
16秒前
anny.white完成签到,获得积分10
17秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
科目三应助Mmmmarys采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812