Differentiating individuals through the chemical composition of their fingermarks

生物识别 计算机科学 人工智能
作者
Marie Gorka,Aurélien Thomas,Andy Bécue
出处
期刊:Forensic Science International [Elsevier]
卷期号:346: 111645-111645 被引量:1
标识
DOI:10.1016/j.forsciint.2023.111645
摘要

Fingermark patterns are one of the oldest means of biometric identification. During this last decade, the molecules that constitute the fingermark residue have gained interest among the forensic research community to gain additional intelligence regarding its donor profile including its gender, age, lifestyle or even its pathological state. In this work, the molecular composition of fingermarks have been studied to monitor the variability between donors and to explore its capacity to differentiate individuals using supervised multi-class classification models. Over one year, fingermarks from thirteen donors have been analysed by Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging (n = 716) and mined by different machine learning approaches. We demonstrate the potential of the fingermark chemical composition to help differentiating individuals with an accuracy between 80% and 96% depending on the period of sample collection for each donor and size of the pool of donors. It would be premature at this stage to transpose the results of this research to real cases, however the conclusions of this study can provide a better understanding of the variations of the chemical composition of the fingermark residue in between individuals over long periods and help clarifying the notion of donorship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
椿人发布了新的文献求助10
1秒前
Q谈小丸子发布了新的文献求助10
2秒前
大力牌皮揣子完成签到 ,获得积分10
2秒前
朱鸿超完成签到,获得积分10
2秒前
橘猫完成签到 ,获得积分10
2秒前
谭祥发布了新的文献求助10
3秒前
3秒前
忧心的若云完成签到,获得积分10
4秒前
chali48发布了新的文献求助10
5秒前
小圭完成签到,获得积分10
5秒前
6秒前
luz完成签到,获得积分10
6秒前
起起完成签到,获得积分10
7秒前
科研的神龙猫完成签到,获得积分10
7秒前
雨天发布了新的文献求助10
7秒前
俊逸绝音发布了新的文献求助10
8秒前
打打应助会撒娇的如音采纳,获得10
9秒前
9秒前
大聪明完成签到,获得积分10
10秒前
Q谈小丸子完成签到,获得积分10
10秒前
NexusExplorer应助lly2025采纳,获得10
10秒前
冷静的如冬完成签到,获得积分10
11秒前
0805zz应助fhbsdufh采纳,获得10
11秒前
零零柒完成签到 ,获得积分10
11秒前
酷波er应助Tender采纳,获得10
12秒前
13秒前
明朗完成签到 ,获得积分10
14秒前
传奇3应助江夏采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
chali48完成签到,获得积分10
16秒前
树池发布了新的文献求助10
16秒前
17秒前
丘比特应助wdasdas采纳,获得10
17秒前
科研通AI6应助liang2508采纳,获得10
17秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382390
求助须知:如何正确求助?哪些是违规求助? 4505491
关于积分的说明 14022095
捐赠科研通 4414924
什么是DOI,文献DOI怎么找? 2425245
邀请新用户注册赠送积分活动 1418035
关于科研通互助平台的介绍 1396036