Differentiating individuals through the chemical composition of their fingermarks

生物识别 计算机科学 人工智能
作者
Marie Gorka,Aurélien Thomas,Andy Bécue
出处
期刊:Forensic Science International [Elsevier BV]
卷期号:346: 111645-111645 被引量:1
标识
DOI:10.1016/j.forsciint.2023.111645
摘要

Fingermark patterns are one of the oldest means of biometric identification. During this last decade, the molecules that constitute the fingermark residue have gained interest among the forensic research community to gain additional intelligence regarding its donor profile including its gender, age, lifestyle or even its pathological state. In this work, the molecular composition of fingermarks have been studied to monitor the variability between donors and to explore its capacity to differentiate individuals using supervised multi-class classification models. Over one year, fingermarks from thirteen donors have been analysed by Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging (n = 716) and mined by different machine learning approaches. We demonstrate the potential of the fingermark chemical composition to help differentiating individuals with an accuracy between 80% and 96% depending on the period of sample collection for each donor and size of the pool of donors. It would be premature at this stage to transpose the results of this research to real cases, however the conclusions of this study can provide a better understanding of the variations of the chemical composition of the fingermark residue in between individuals over long periods and help clarifying the notion of donorship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迪仔完成签到 ,获得积分10
2秒前
sdfhjbhsdfb完成签到 ,获得积分10
3秒前
3秒前
64658应助DWRH采纳,获得10
5秒前
yyyyy完成签到,获得积分10
5秒前
6秒前
666应助nn采纳,获得10
7秒前
人生如梦应助干饭人采纳,获得10
7秒前
苹果秋灵完成签到,获得积分10
7秒前
希望天下0贩的0应助wy97采纳,获得10
8秒前
绿色催化完成签到,获得积分10
8秒前
生动的若之完成签到 ,获得积分10
10秒前
杜兰特发布了新的文献求助10
10秒前
11秒前
11秒前
俭朴夜香完成签到,获得积分10
12秒前
科研鸟发布了新的文献求助10
14秒前
15秒前
16秒前
17秒前
牛牛眉目发布了新的文献求助10
17秒前
酷波er应助科研通管家采纳,获得10
18秒前
昵称应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
ED应助科研通管家采纳,获得10
18秒前
18秒前
无花果应助科研通管家采纳,获得20
18秒前
怡然的代玉完成签到,获得积分10
20秒前
20秒前
一一完成签到,获得积分10
20秒前
Camellia发布了新的文献求助10
20秒前
23秒前
田様应助逺山長采纳,获得10
23秒前
牛牛眉目发布了新的文献求助10
26秒前
慕青应助伶俐的冰之采纳,获得20
27秒前
英俊延恶完成签到,获得积分10
29秒前
刘婧完成签到,获得积分10
29秒前
zx完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511761
关于积分的说明 11159641
捐赠科研通 3246353
什么是DOI,文献DOI怎么找? 1793415
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804374