Nitrogen removal by algal-bacterial consortium during mainstream wastewater treatment: Transformation mechanisms and potential N2O mitigation

反硝化 好氧反硝化 自养 环境化学 藻类 硝化作用 混合营养体 普通小球藻 化学 小球藻 活性污泥 异养 污水处理 反硝化细菌 氮气 环境工程 生物 小球藻 植物 细菌 环境科学 有机化学 遗传学
作者
Qi Li,Yifeng Xu,Chuanzhou Liang,Lai Peng,Chencheng Le
出处
期刊:Water Research [Elsevier]
卷期号:235: 119890-119890 被引量:2
标识
DOI:10.1016/j.watres.2023.119890
摘要

This work investigated nitrogen transformation pathways of the algal-bacterial consortium as well as its potential in reducing nitrous oxide (N2O) emission in enclosed, open and aerated reactors. The results confirmed the superior ammonium removal performance of the algal-bacterial consortium relative to the single algae (Chlorella vulgaris) or the activated sludge, achieving the highest efficiency at 100% and the highest rate of 7.34 mg N g MLSS-1 h-1 in the open reactor with glucose. Enhanced total nitrogen (TN) removal (to 74.6%) by the algal-bacterial consortium was achieved via mixotrophic algal assimilation and bacterial denitrification under oxygen-limited and glucose-sufficient conditions. Nitrogen distribution indicated that ammonia oxidation (∼41.8%) and algal assimilation (∼43.5%) were the main pathways to remove ammonium by the algal-bacterial consortium. TN removal by the algal-bacterial consortium was primarily achieved by algal assimilation (28.1-40.8%), followed by bacterial denitrification (2.9-26.5%). Furthermore, the algal-bacterial consortium contributed to N2O mitigation compared with the activated sludge, reducing N2O production by 35.5-55.0% via autotrophic pathways and by 81.0-93.6% via mixotrophic pathways. Nitrogen assimilation by algae was boosted with the addition of glucose and thus largely restrained N2O production from nitrification and denitrification. The synergism between algae and bacteria was also conducive to an enhanced N2O reduction by denitrification and reduced direct/indirect carbon emissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静的颦发布了新的文献求助10
刚刚
刚刚
cjy完成签到,获得积分10
刚刚
刚刚
1秒前
Zoe完成签到,获得积分10
1秒前
1秒前
1秒前
任性完成签到,获得积分10
1秒前
an发布了新的文献求助10
2秒前
2秒前
领导范儿应助袅袅采纳,获得10
2秒前
若狂完成签到,获得积分10
2秒前
Gyy完成签到,获得积分10
3秒前
3秒前
3秒前
上官若男应助hu970采纳,获得10
3秒前
4秒前
妮儿发布了新的文献求助10
5秒前
5秒前
Aile。完成签到,获得积分10
5秒前
5秒前
霹雳游侠完成签到,获得积分10
6秒前
hjj发布了新的文献求助10
8秒前
gg完成签到,获得积分10
8秒前
狂野觅云发布了新的文献求助10
8秒前
坚强的广山应助iRan采纳,获得200
8秒前
8秒前
余姚发布了新的文献求助10
8秒前
8秒前
8秒前
哈哈发布了新的文献求助10
8秒前
洛尚发布了新的文献求助10
9秒前
ccc发布了新的文献求助10
9秒前
9秒前
潦草发布了新的文献求助10
10秒前
fighting完成签到,获得积分10
10秒前
10秒前
源源源完成签到 ,获得积分10
11秒前
HEIKU应助鲤鱼凛采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759