Prediction model of central nervous system infections in patients with severe traumatic brain injury after craniotomy

医学 列线图 开颅术 创伤性脑损伤 重症监护室 脑脊液 腰椎穿刺 麻醉 外科 内科学 精神科
作者
Guangyu Lu,Yuting Liu,Yong Huang,Jingjin Ding,Qingshi Zeng,Li Zhao,M. Li,Hailong Yu,Yuping Li
出处
期刊:Journal of Hospital Infection [Elsevier BV]
卷期号:136: 90-99 被引量:4
标识
DOI:10.1016/j.jhin.2023.04.004
摘要

At present, central nervous system (CNS) infection in patients with traumatic brain injury is usually diagnosed according to the clinical manifestations and results of cerebrospinal fluid (CSF) bacterial culture. However, there are difficulties in obtaining specimens in the early stage.To develop and evaluate a nomogram to predict CNS infections in patients with severe traumatic brain injury (sTBI) after craniotomy.This retrospective study was conducted in consecutive adult patients with sTBI who were admitted to the neurointensive care unit (NCU) between January 2014 and September 2020. The least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analysis were applied to construct the nomogram, and k-fold cross-validation (k = 10) to validate it.A total of 471 patients with sTBI who underwent surgical treatment were included, of whom 75 patients (15.7%) were diagnosed with CNS infections. The serum level of albumin, cerebrospinal fluid (CSF) otorrhoea at admission, CSF leakage, CSF sampling, and postoperative re-bleeding were associated with CNS infections and incorporated into the nomogram. Our model yielded satisfactory prediction performance with an area under the curve value of 0.962 in the training set and 0.942 in the internal validation. The calibration curve exhibited satisfactory concordance between the predicted and actual outcomes. The model had good clinical use since the DCA covered a large threshold probability.Individualized nomograms for CNS infections in sTBI patients could help physicians screen for high-risk patients to perform early interventions, reducing the incidence of CNS infections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助浮浮世世采纳,获得10
1秒前
彭于晏应助查查采纳,获得10
1秒前
yaowei关注了科研通微信公众号
1秒前
Zymiao完成签到,获得积分20
1秒前
2秒前
3秒前
3秒前
许子健发布了新的文献求助10
3秒前
4秒前
孤独依波发布了新的文献求助20
4秒前
4秒前
觅夏发布了新的文献求助10
5秒前
爆米花应助梓榆采纳,获得10
5秒前
Lucas应助浮浮世世采纳,获得10
7秒前
baobao发布了新的文献求助10
7秒前
7秒前
carpybala发布了新的文献求助10
8秒前
球球发布了新的文献求助10
8秒前
丘比特应助ZHANGMANLI0422采纳,获得10
8秒前
小郑完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
WTT完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
Emma完成签到,获得积分10
10秒前
Hh完成签到,获得积分10
11秒前
梧桐树完成签到,获得积分10
11秒前
典雅的思菱完成签到,获得积分10
11秒前
11秒前
成就的沛菡完成签到 ,获得积分10
11秒前
ysf完成签到,获得积分10
11秒前
doubleshake发布了新的文献求助10
11秒前
鱿鱼完成签到,获得积分10
12秒前
12秒前
KingWong发布了新的文献求助10
12秒前
13秒前
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646