Prediction model of central nervous system infections in patients with severe traumatic brain injury after craniotomy

医学 列线图 开颅术 创伤性脑损伤 重症监护室 脑脊液 腰椎穿刺 麻醉 外科 内科学 精神科
作者
Guangyu Lu,Yuting Liu,Yong Huang,Jingjin Ding,Qingshi Zeng,Li Zhao,M. Li,Hailong Yu,Yuping Li
出处
期刊:Journal of Hospital Infection [Elsevier]
卷期号:136: 90-99 被引量:4
标识
DOI:10.1016/j.jhin.2023.04.004
摘要

At present, central nervous system (CNS) infection in patients with traumatic brain injury is usually diagnosed according to the clinical manifestations and results of cerebrospinal fluid (CSF) bacterial culture. However, there are difficulties in obtaining specimens in the early stage.To develop and evaluate a nomogram to predict CNS infections in patients with severe traumatic brain injury (sTBI) after craniotomy.This retrospective study was conducted in consecutive adult patients with sTBI who were admitted to the neurointensive care unit (NCU) between January 2014 and September 2020. The least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analysis were applied to construct the nomogram, and k-fold cross-validation (k = 10) to validate it.A total of 471 patients with sTBI who underwent surgical treatment were included, of whom 75 patients (15.7%) were diagnosed with CNS infections. The serum level of albumin, cerebrospinal fluid (CSF) otorrhoea at admission, CSF leakage, CSF sampling, and postoperative re-bleeding were associated with CNS infections and incorporated into the nomogram. Our model yielded satisfactory prediction performance with an area under the curve value of 0.962 in the training set and 0.942 in the internal validation. The calibration curve exhibited satisfactory concordance between the predicted and actual outcomes. The model had good clinical use since the DCA covered a large threshold probability.Individualized nomograms for CNS infections in sTBI patients could help physicians screen for high-risk patients to perform early interventions, reducing the incidence of CNS infections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研执修完成签到,获得积分10
1秒前
科研通AI2S应助龙傲天采纳,获得10
3秒前
4秒前
6秒前
科研通AI2S应助pryturk采纳,获得10
7秒前
张Morningstar完成签到,获得积分10
10秒前
专注秋尽完成签到,获得积分10
11秒前
11秒前
junru发布了新的文献求助10
11秒前
完美世界应助我相信采纳,获得30
12秒前
CC发布了新的文献求助20
14秒前
想象之中发布了新的文献求助10
14秒前
15秒前
16秒前
彩色半烟完成签到,获得积分10
18秒前
18秒前
18秒前
x11571发布了新的文献求助20
20秒前
21秒前
21秒前
23秒前
cai发布了新的文献求助20
23秒前
Hazel完成签到 ,获得积分10
24秒前
JaneChen发布了新的文献求助30
24秒前
fsf完成签到,获得积分10
25秒前
想象之中完成签到,获得积分10
28秒前
29秒前
Ava应助儒雅尔白采纳,获得10
31秒前
英勇的书包完成签到,获得积分20
31秒前
33秒前
阔达莫英发布了新的文献求助10
34秒前
王QQ完成签到 ,获得积分10
36秒前
37秒前
林好人完成签到,获得积分10
39秒前
41秒前
不易BY完成签到,获得积分20
41秒前
我相信完成签到,获得积分20
42秒前
42秒前
43秒前
开心发布了新的文献求助10
43秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140205
求助须知:如何正确求助?哪些是违规求助? 2791011
关于积分的说明 7797468
捐赠科研通 2447398
什么是DOI,文献DOI怎么找? 1301879
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194