Prediction model of central nervous system infections in patients with severe traumatic brain injury after craniotomy

医学 列线图 开颅术 创伤性脑损伤 重症监护室 脑脊液 腰椎穿刺 麻醉 外科 内科学 精神科
作者
Guangyu Lu,Yuting Liu,Yong Huang,Jingjin Ding,Qingshi Zeng,Li Zhao,M. Li,Hailong Yu,Yuping Li
出处
期刊:Journal of Hospital Infection [Elsevier]
卷期号:136: 90-99 被引量:7
标识
DOI:10.1016/j.jhin.2023.04.004
摘要

At present, central nervous system (CNS) infection in patients with traumatic brain injury is usually diagnosed according to the clinical manifestations and results of cerebrospinal fluid (CSF) bacterial culture. However, there are difficulties in obtaining specimens in the early stage.To develop and evaluate a nomogram to predict CNS infections in patients with severe traumatic brain injury (sTBI) after craniotomy.This retrospective study was conducted in consecutive adult patients with sTBI who were admitted to the neurointensive care unit (NCU) between January 2014 and September 2020. The least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analysis were applied to construct the nomogram, and k-fold cross-validation (k = 10) to validate it.A total of 471 patients with sTBI who underwent surgical treatment were included, of whom 75 patients (15.7%) were diagnosed with CNS infections. The serum level of albumin, cerebrospinal fluid (CSF) otorrhoea at admission, CSF leakage, CSF sampling, and postoperative re-bleeding were associated with CNS infections and incorporated into the nomogram. Our model yielded satisfactory prediction performance with an area under the curve value of 0.962 in the training set and 0.942 in the internal validation. The calibration curve exhibited satisfactory concordance between the predicted and actual outcomes. The model had good clinical use since the DCA covered a large threshold probability.Individualized nomograms for CNS infections in sTBI patients could help physicians screen for high-risk patients to perform early interventions, reducing the incidence of CNS infections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6.1应助马成双采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
绵绵完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
wjw发布了新的文献求助10
2秒前
lh完成签到 ,获得积分10
4秒前
6秒前
AN发布了新的文献求助30
7秒前
8秒前
珏珏_不是玉玉完成签到 ,获得积分10
9秒前
10秒前
柳大楚发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
zgrmws完成签到,获得积分0
14秒前
16秒前
马成双发布了新的文献求助10
17秒前
BSFXZ完成签到,获得积分10
17秒前
谭续燊发布了新的文献求助10
18秒前
Colleen完成签到,获得积分10
19秒前
save完成签到,获得积分10
20秒前
姜勇完成签到,获得积分10
20秒前
21秒前
饱满绮波完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
23秒前
YeeLeeLee完成签到,获得积分10
23秒前
谭续燊完成签到,获得积分10
23秒前
马上动起来完成签到,获得积分0
23秒前
24秒前
hah完成签到,获得积分10
25秒前
先锋老刘001完成签到 ,获得积分20
25秒前
量子星尘发布了新的文献求助10
27秒前
Hua发布了新的文献求助10
27秒前
28秒前
小蓝发布了新的文献求助10
31秒前
31秒前
GWT发布了新的文献求助10
32秒前
怡然白竹完成签到 ,获得积分10
33秒前
Gloria的保镖完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900