Detecting Major Depressive Disorder by Graph Neural Network Exploiting Resting-State Functional MRI

可解释性 联营 计算机科学 人工智能 判别式 图形 静息状态功能磁共振成像 重性抑郁障碍 模式识别(心理学) 功能磁共振成像 编码器 机器学习 心理学 神经科学 认知 理论计算机科学 操作系统
作者
Tianyi Zhao,Gaoyan Zhang
出处
期刊:Communications in computer and information science 卷期号:: 255-266 被引量:2
标识
DOI:10.1007/978-981-99-1642-9_22
摘要

Major Depressive Disorder (MDD) has raised concern worldwide because of its prevalence and ambiguous neuropathophysiology. Resting-state functional MRI (rs-fMRI) is an applicable tool for measuring abnormal brain functional connectivity in MDD. However, effective method for early diagnosis and treatment for MDD is still lacking. In this study, we propose a three-stage classification framework to analyze rs-fMRI data for the diagnosis of MDD. We first apply self-supervised pretraining on developed graph encoder, incorporating triplet relationship among input subjects, to enable higher ability to learn robust and discriminative graph representations. Then, supervised classification is performed utilizing the pretrained encoder. Specifically, to better model subjects’ brain as functional connectivity network, our developed graph encoder consists of following modules: non-linear feature transformation, graph isomorphism convolution, topk pooling and hierarchical readout. Afterwards, ensemble learning is implemented to further boost model’s performance. Finally, we identify salient ROIs by investigating pooling scores learned by topk pooling layers, which implies brain areas potentially related to MDD and equips our model with fair interpretability. Experimental results on Rest-meta-MDD, a large-scale multisite dataset, suggest the efficacy of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
觅海完成签到,获得积分10
1秒前
fanfan发布了新的文献求助10
2秒前
4秒前
俊杰发布了新的文献求助30
5秒前
SYLH应助hhh采纳,获得10
5秒前
觅海发布了新的文献求助10
6秒前
9秒前
无敌小汐完成签到,获得积分10
9秒前
毛蕊发布了新的文献求助10
10秒前
hlx关注了科研通微信公众号
12秒前
12秒前
13秒前
兴奋的小虾米完成签到,获得积分10
13秒前
16秒前
MingqingFang发布了新的文献求助10
16秒前
16秒前
爆米花应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
猪猪hero应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
猪猪hero应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
猪猪hero应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
20秒前
Boo发布了新的文献求助10
21秒前
wwk发布了新的文献求助10
22秒前
www完成签到 ,获得积分10
24秒前
an完成签到,获得积分10
25秒前
在水一方应助余闻问采纳,获得10
27秒前
Hemingwayway发布了新的文献求助10
28秒前
30秒前
传奇3应助一只龟龟采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959245
求助须知:如何正确求助?哪些是违规求助? 3505545
关于积分的说明 11124398
捐赠科研通 3237291
什么是DOI,文献DOI怎么找? 1789026
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824