BATFormer: Towards Boundary-Aware Lightweight Transformer for Efficient Medical Image Segmentation

计算机科学 分割 计算复杂性理论 图像分割 人工智能 变压器 熵(时间箭头) 模式识别(心理学) 计算机视觉 算法 工程类 电气工程 电压 物理 量子力学
作者
Xian Lin,Li Yu,Kwang‐Ting Cheng,Zengqiang Yan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3501-3512 被引量:15
标识
DOI:10.1109/jbhi.2023.3266977
摘要

Transformers, born to remedy the inadequate receptive fields of CNNs, have drawn explosive attention recently. However, the daunting computational complexity of global representation learning, together with rigid window partitioning, hinders their deployment in medical image segmentation. This work aims to address the above two issues in transformers for better medical image segmentation.We propose a boundary-aware lightweight transformer (BATFormer) that can build cross-scale global interaction with lower computational complexity and generate windows flexibly under the guidance of entropy. Specifically, to fully explore the benefits of transformers in long-range dependency establishment, a cross-scale global transformer (CGT) module is introduced to jointly utilize multiple small-scale feature maps for richer global features with lower computational complexity. Given the importance of shape modeling in medical image segmentation, a boundary-aware local transformer (BLT) module is constructed. Different from rigid window partitioning in vanilla transformers which would produce boundary distortion, BLT adopts an adaptive window partitioning scheme under the guidance of entropy for both computational complexity reduction and shape preservation.BATFormer achieves the best performance in Dice of 92.84 %, 91.97 %, 90.26 %, and 96.30 % for the average, right ventricle, myocardium, and left ventricle respectively on the ACDC dataset and the best performance in Dice, IoU, and ACC of 90.76 %, 84.64 %, and 96.76 % respectively on the ISIC 2018 dataset. More importantly, BATFormer requires the least amount of model parameters and the lowest computational complexity compared to the state-of-the-art approaches.Our results demonstrate the necessity of developing customized transformers for efficient and better medical image segmentation. We believe the design of BATFormer is inspiring and extendable to other applications/frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
花开那年发布了新的文献求助10
2秒前
4秒前
4秒前
Akim应助L912294993采纳,获得10
4秒前
脑洞疼应助江峰采纳,获得10
5秒前
投石问路发布了新的文献求助10
5秒前
ziyuexu发布了新的文献求助10
6秒前
6秒前
可爱的函函应助害羞听芹采纳,获得10
6秒前
CLareina发布了新的文献求助10
7秒前
7秒前
雪松完成签到,获得积分10
7秒前
顾矜应助KhalilHao采纳,获得10
8秒前
赘婿应助zzy采纳,获得10
8秒前
rea发布了新的文献求助30
9秒前
Darlin发布了新的文献求助10
9秒前
9秒前
11秒前
skip发布了新的文献求助10
11秒前
11秒前
11秒前
空曲发布了新的文献求助10
12秒前
NexusExplorer应助Ricochet采纳,获得10
13秒前
Flora发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
123完成签到,获得积分10
14秒前
蓝天发布了新的文献求助20
14秒前
dreamland关注了科研通微信公众号
15秒前
阿媛呐发布了新的文献求助10
15秒前
16秒前
CLareina完成签到,获得积分10
16秒前
英俊的代容发布了新的文献求助100
16秒前
贰陆发布了新的文献求助10
17秒前
zzy完成签到,获得积分20
17秒前
lijingwen发布了新的文献求助10
18秒前
阿西吧发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149952
求助须知:如何正确求助?哪些是违规求助? 2800974
关于积分的说明 7842886
捐赠科研通 2458475
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628524
版权声明 601721