BATFormer: Towards Boundary-Aware Lightweight Transformer for Efficient Medical Image Segmentation

计算机科学 分割 图像分割 人工智能 变压器 医学影像学 尺度空间分割 计算机视觉 工程类 电气工程 电压
作者
Xian Lin,Li Yu,Kwang‐Ting Cheng,Zengqiang Yan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3501-3512 被引量:35
标识
DOI:10.1109/jbhi.2023.3266977
摘要

Objective: Transformers, born to remedy the inadequate receptive fields of CNNs, have drawn explosive attention recently. However, the daunting computational complexity of global representation learning, together with rigid window partitioning, hinders their deployment in medical image segmentation. This work aims to address the above two issues in transformers for better medical image segmentation. Methods: We propose a boundary-aware lightweight transformer (BATFormer) that can build cross-scale global interaction with lower computational complexity and generate windows flexibly under the guidance of entropy. Specifically, to fully explore the benefits of transformers in long-range dependency establishment, a cross-scale global transformer (CGT) module is introduced to jointly utilize multiple small-scale feature maps for richer global features with lower computational complexity. Given the importance of shape modeling in medical image segmentation, a boundary-aware local transformer (BLT) module is constructed. Different from rigid window partitioning in vanilla transformers which would produce boundary distortion, BLT adopts an adaptive window partitioning scheme under the guidance of entropy for both computational complexity reduction and shape preservation. Results: BATFormer achieves the best performance in Dice of 92.84 $\%$ , 91.97 $\%$ , 90.26 $\%$ , and 96.30 $\%$ for the average, right ventricle, myocardium, and left ventricle respectively on the ACDC dataset and the best performance in Dice, IoU, and ACC of 90.76 $\%$ , 84.64 $\%$ , and 96.76 $\%$ respectively on the ISIC 2018 dataset. More importantly, BATFormer requires the least amount of model parameters and the lowest computational complexity compared to the state-of-the-art approaches. Conclusion and Significance: Our results demonstrate the necessity of developing customized transformers for efficient and better medical image segmentation. We believe the design of BATFormer is inspiring and extendable to other applications/frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助lv采纳,获得10
刚刚
yue完成签到,获得积分10
4秒前
情怀应助小巧的冰烟采纳,获得10
5秒前
8秒前
9秒前
迎海完成签到,获得积分10
11秒前
shitou完成签到,获得积分10
11秒前
郭郭发布了新的文献求助10
12秒前
生动路人应助MYY采纳,获得10
14秒前
Gloyxtg发布了新的文献求助10
15秒前
15秒前
谷谷完成签到 ,获得积分10
16秒前
19秒前
27秒前
zly完成签到 ,获得积分10
28秒前
28秒前
可爱的函函应助lty采纳,获得10
33秒前
wanwan发布了新的文献求助10
33秒前
35秒前
新xin完成签到,获得积分10
39秒前
大个应助影儿采纳,获得10
39秒前
40秒前
41秒前
iday发布了新的文献求助10
44秒前
45秒前
46秒前
lty发布了新的文献求助10
47秒前
小雨发布了新的文献求助10
48秒前
77完成签到 ,获得积分10
49秒前
彭于晏应助歪比八不采纳,获得10
49秒前
稳重凌旋发布了新的文献求助10
50秒前
cossen完成签到,获得积分10
50秒前
55秒前
领养一朵云关注了科研通微信公众号
56秒前
孙燕应助王宏宇采纳,获得10
59秒前
1分钟前
歪比八不发布了新的文献求助10
1分钟前
hying发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993104
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264385
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652