光热治疗
电催化剂
析氧
电解水
电解
化学工程
材料科学
电解质
化学
纳米技术
电极
无机化学
电化学
物理化学
工程类
作者
Lunhong Ai,Xinzhi Wang,Jingyu Luo,Jing Jiang
标识
DOI:10.1016/j.jcis.2023.04.031
摘要
Developing multifunctional all-in-one electrocatalysts for energy-saving hydrogen generation remains a challenge. In this study, a simple and feasible thermal phosphorization strategy is explored to rationally construct P-doped MoO2-NiMoO4 heterostructure on nickel foam (NF). The heterointerfaced P-MoO2-NiMoO4/NF can simultaneously realize the integrated all-in-one functionalities, innovatively introducing superwettable surfaces, photothermal conversion capabilities and electrocatalytic functions. The superwettability gives P-MoO2-NiMoO4/NF sufficient electrolyte permeation and smooth bubble detachment. The plasmonic MoO2 with photothermal performance greatly elevates the local surface temperature of in P-MoO2-NiMoO4/NF, which is conducive to improve the electrocatalytic efficiency. The favorable in-situ surface reconstruction brings abundant active sites for electrocatalytic reactions. As an advanced multifunctional electrocatalyst, the superwettable and photothermal P-MoO2-NiMoO4/NF exhibits significantly improved performances in oxygen evolution reaction (OER) and urea oxidation reaction (UOR). More importantly, the highly efficient and stable overall water-urea electrolysis assisted by photothermal fields can be simply achieved by exposing P-MoO2-NiMoO4/NF to near-infrared (NIR) light.
科研通智能强力驱动
Strongly Powered by AbleSci AI