亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SU-Net: A retinal segmentation model based on improved U-Net network

分割 人工智能 计算机科学 尺度空间分割 图像分割 模式识别(心理学) Sørensen–骰子系数 基于分割的对象分类 计算机视觉 特征(语言学) 语言学 哲学
作者
Mengzhu Yang,Yongfang Wang,Guoqiang Li,Lin‐Tao Zhang,Dong Zhu,Chengchao Wang
标识
DOI:10.1145/3584376.3584545
摘要

Image segmentation plays a very important role in medical diagnosis. It can extract information such as the area of interest, human tissue, and lesion size. Diseases of the nervous system, leukemia, and diabetes can cause eye problems. To observe the changes in the distribution, structure, and morphological characteristics of blood vessels in retinal images by image segmentation, and it also can help diagnose the degree of lesions of the above diseases to a certain extent. Although the commonly used artificial segmentation is the gold standard, it has the disadvantages of being time-consuming, power-consuming, and unable to reproduce, so the research on accurate and efficient automatic image segmentation method is the focus of image segmentation research. Because of the problems, such as partial feature data loss, low segmentation accuracy, and pathological information segmentation errors that may occur in the traditional U-Net model during retinal image segmentation, we proposed an improved U-Net based retinal image segmentation model – SU-Net. In this method, an attention module is added to the U-Net coding process, which can fully capture the context information to improve the accuracy of image feature extraction. The effectiveness of the proposed method was verified by testing on the publicly available retina data set. The average IoU, Dice coefficient, and global segmentation accuracy were taken as evaluation indexes. Compared with the U-Net model, experiments show that the accuracy of IoU, Dice, and global segmentation has increased by 0.7, 0.9, and 0.2, and reached 82.4%, 82.2%, and 95.5% respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
foxdaopo发布了新的文献求助10
刚刚
1秒前
yoona发布了新的文献求助10
2秒前
小蒋完成签到,获得积分10
4秒前
科研通AI2S应助小蒋采纳,获得10
8秒前
Forward完成签到,获得积分10
18秒前
18秒前
今天放假了吗完成签到,获得积分10
18秒前
19秒前
sskk完成签到,获得积分10
19秒前
独特绿蓉发布了新的文献求助10
25秒前
江蹇发布了新的文献求助10
25秒前
25秒前
八方面完成签到 ,获得积分10
28秒前
29秒前
30秒前
zxt应助科研通管家采纳,获得10
36秒前
大个应助科研通管家采纳,获得10
36秒前
zxt应助科研通管家采纳,获得10
37秒前
38秒前
jevon应助独特绿蓉采纳,获得10
39秒前
来了完成签到,获得积分10
41秒前
Hey完成签到 ,获得积分10
41秒前
ZHX完成签到 ,获得积分10
46秒前
Doris应助江蹇采纳,获得10
49秒前
50秒前
jiwenjing发布了新的文献求助10
52秒前
高山七石完成签到,获得积分10
53秒前
jiwenjing完成签到 ,获得积分10
1分钟前
江蹇完成签到,获得积分10
1分钟前
1分钟前
陌上发布了新的文献求助10
1分钟前
wanci应助sy采纳,获得10
1分钟前
www完成签到 ,获得积分10
1分钟前
孤独的采珊完成签到 ,获得积分10
1分钟前
1分钟前
哭泣的丝完成签到 ,获得积分10
1分钟前
1分钟前
机灵的衬衫完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207671
求助须知:如何正确求助?哪些是违规求助? 2856996
关于积分的说明 8108052
捐赠科研通 2522565
什么是DOI,文献DOI怎么找? 1355756
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613602