Theoretical bounds of generalization error for generalized extreme learning machine and random vector functional link network

极限学习机 计算机科学 矩阵范数 一般化 算法 人工神经网络 提前停车 秩(图论) 反向 多元随机变量 可靠性(半导体) 摩尔-彭罗斯伪逆 基质(化学分析) 上下界 人工智能 随机变量 数学 特征向量 功率(物理) 统计 数学分析 物理 几何学 材料科学 量子力学 组合数学 复合材料
作者
Meejoung Kim
出处
期刊:Neural Networks [Elsevier]
卷期号:164: 49-66
标识
DOI:10.1016/j.neunet.2023.04.014
摘要

Ensuring the prediction accuracy of a learning algorithm on a theoretical basis is crucial and necessary for building the reliability of the learning algorithm. This paper analyzes prediction error obtained through the least square estimation in the generalized extreme learning machine (GELM), which applies the limiting behavior of the Moore-Penrose generalized inverse (M-P GI) to the output matrix of ELM. ELM is the random vector functional link (RVFL) network without direct input to output links Specifically, we analyze tail probabilities associated with upper and lower bounds to the error expressed by norms. The analysis employs the concepts of the L2 norm, the Frobenius norm, the stable rank, and the M-P GI. The coverage of theoretical analysis extends to the RVFL network. In addition, a criterion for more precise bounds of prediction errors that may give stochastically better network environments is provided. The analysis is applied to simple examples and large-size datasets to illustrate the procedure and verify the analysis and execution speed with big data. Based on this study, we can immediately obtain the upper and lower bounds of prediction errors and their associated tail probabilities through matrices calculations appearing in the GELM and RVFL. This analysis provides criteria for the reliability of the learning performance of a network in real-time and for network structure that enables obtaining better performance reliability. This analysis can be applied in various areas where the ELM and RVFL are adopted. The proposed analytical method will guide the theoretical analysis of errors occurring in DNNs, which employ a gradient descent algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
雪酪芋泥球完成签到 ,获得积分10
2秒前
牢大完成签到 ,获得积分10
3秒前
mrmr发布了新的文献求助10
3秒前
3秒前
3秒前
慕青应助Triangle1116采纳,获得10
4秒前
5秒前
5秒前
浮游应助无心的土豆采纳,获得10
6秒前
研友_滕谷完成签到,获得积分20
7秒前
郝丽娜发布了新的文献求助10
7秒前
crisp发布了新的文献求助10
8秒前
simiger完成签到,获得积分10
8秒前
研友_滕谷发布了新的文献求助10
9秒前
歇菜完成签到,获得积分10
10秒前
Bi8bo发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
眼睛大书兰完成签到,获得积分20
12秒前
郝丽娜完成签到,获得积分20
17秒前
Triangle1116发布了新的文献求助10
17秒前
17秒前
18秒前
漫若浮光完成签到,获得积分10
19秒前
1515完成签到 ,获得积分10
20秒前
22秒前
领导范儿应助从嘉采纳,获得10
22秒前
Lilith发布了新的文献求助10
23秒前
26秒前
威武荔枝发布了新的文献求助10
28秒前
狂野的明杰完成签到,获得积分10
28秒前
无花果应助Xiu采纳,获得10
30秒前
婧婧完成签到 ,获得积分10
30秒前
共享精神应助crisp采纳,获得10
31秒前
Triangle1116完成签到 ,获得积分10
32秒前
我是老大应助科研通管家采纳,获得10
32秒前
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499073
求助须知:如何正确求助?哪些是违规求助? 4596077
关于积分的说明 14452115
捐赠科研通 4529187
什么是DOI,文献DOI怎么找? 2481836
邀请新用户注册赠送积分活动 1465860
关于科研通互助平台的介绍 1438802