Theoretical bounds of generalization error for generalized extreme learning machine and random vector functional link network

极限学习机 计算机科学 矩阵范数 一般化 算法 人工神经网络 提前停车 秩(图论) 反向 多元随机变量 可靠性(半导体) 摩尔-彭罗斯伪逆 基质(化学分析) 上下界 人工智能 随机变量 数学 特征向量 功率(物理) 统计 数学分析 物理 几何学 材料科学 量子力学 组合数学 复合材料
作者
Meejoung Kim
出处
期刊:Neural Networks [Elsevier]
卷期号:164: 49-66
标识
DOI:10.1016/j.neunet.2023.04.014
摘要

Ensuring the prediction accuracy of a learning algorithm on a theoretical basis is crucial and necessary for building the reliability of the learning algorithm. This paper analyzes prediction error obtained through the least square estimation in the generalized extreme learning machine (GELM), which applies the limiting behavior of the Moore-Penrose generalized inverse (M-P GI) to the output matrix of ELM. ELM is the random vector functional link (RVFL) network without direct input to output links Specifically, we analyze tail probabilities associated with upper and lower bounds to the error expressed by norms. The analysis employs the concepts of the L2 norm, the Frobenius norm, the stable rank, and the M-P GI. The coverage of theoretical analysis extends to the RVFL network. In addition, a criterion for more precise bounds of prediction errors that may give stochastically better network environments is provided. The analysis is applied to simple examples and large-size datasets to illustrate the procedure and verify the analysis and execution speed with big data. Based on this study, we can immediately obtain the upper and lower bounds of prediction errors and their associated tail probabilities through matrices calculations appearing in the GELM and RVFL. This analysis provides criteria for the reliability of the learning performance of a network in real-time and for network structure that enables obtaining better performance reliability. This analysis can be applied in various areas where the ELM and RVFL are adopted. The proposed analytical method will guide the theoretical analysis of errors occurring in DNNs, which employ a gradient descent algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyee完成签到 ,获得积分10
1秒前
1秒前
华仔应助q183采纳,获得10
1秒前
帮帮孩子完成签到,获得积分10
1秒前
科目三应助哦啦啦采纳,获得10
1秒前
小林完成签到,获得积分10
2秒前
万能图书馆应助YANYAN采纳,获得10
3秒前
头哥应助美丽大河马采纳,获得10
3秒前
4秒前
镜燃发布了新的文献求助10
5秒前
6秒前
NicotineZen完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
干净的凡桃完成签到,获得积分10
7秒前
英俊的铭应助文俊伟采纳,获得30
8秒前
10秒前
fatcat完成签到,获得积分10
10秒前
pluto应助move采纳,获得10
12秒前
12秒前
xcx发布了新的文献求助10
12秒前
13秒前
13秒前
实验室应助Sunbrust采纳,获得30
14秒前
one完成签到 ,获得积分10
15秒前
q183发布了新的文献求助10
15秒前
送外卖了完成签到,获得积分10
15秒前
翁醉山完成签到,获得积分10
15秒前
16秒前
彭于晏应助南瓜饼子铺采纳,获得10
17秒前
18秒前
隐形的宝宝完成签到,获得积分10
18秒前
圣斗士发布了新的文献求助10
18秒前
18秒前
镜燃完成签到 ,获得积分10
19秒前
科研通AI6应助Tomasong采纳,获得10
19秒前
正直芫发布了新的文献求助10
19秒前
毛豆爸爸应助科研通管家采纳,获得10
20秒前
20秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653053
求助须知:如何正确求助?哪些是违规求助? 4789236
关于积分的说明 15062819
捐赠科研通 4811737
什么是DOI,文献DOI怎么找? 2574034
邀请新用户注册赠送积分活动 1529786
关于科研通互助平台的介绍 1488422