强化学习
计算机科学
控制重构
网络拓扑
适应性
延迟(音频)
分布式计算
互连
计算机体系结构
带宽(计算)
拓扑(电路)
人工智能
计算机网络
嵌入式系统
工程类
电信
电气工程
生态学
生物
作者
Yu Shang,Xingwen Guo,Bingli Guo,Hai‐Xi Wang,Jie Xiao,Shanguo Huang
出处
期刊:2017 Asia Communications and Photonics Conference (ACP)
日期:2022-11-05
卷期号:: 1163-1167
被引量:1
标识
DOI:10.1109/acp55869.2022.10088485
摘要
High-density optical interconnects enable high-bandwidth, low-latency and energy-efficient communication. Also, in order to enhance the adaptability of High Performance Computing (HPC) networks for traffic variation, optical networking reconfiguration capability is a promising alternative to traditional fixed interconnection architecture. We propose a reconfigurable optical network for HPC systems that can automatically switch between different topologies controlled by a Deep Reinforcement Learning (DRL) agent. By varying the topology of our network, we evaluate it using an Advantage Actor-Critic (A2C) and a Deep Deterministic Policy Gradient (DDPG) algorithm-based scheme. Results show that our prototype achieves up to 1.7x performance improvement.
科研通智能强力驱动
Strongly Powered by AbleSci AI