亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

NMR-guided directed evolution

计算机科学 计算生物学 重新调整用途 化学 机器学习 生物 生态学
作者
Sagar Bhattacharya,Eleonora Margheritis,Katsuya Takahashi,Alona Kulesha,Areetha D’Souza,Inhye Kim,Jennifer H. Yoon,Jeremy R. H. Tame,Alexander N. Volkov,Olga V. Makhlynets,Ivan V. Korendovych
出处
期刊:Nature [Springer Nature]
卷期号:610 (7931): 389-393 被引量:49
标识
DOI:10.1038/s41586-022-05278-9
摘要

Directed evolution is a powerful tool for improving existing properties and imparting completely new functionalities to proteins1-4. Nonetheless, its potential in even small proteins is inherently limited by the astronomical number of possible amino acid sequences. Sampling the complete sequence space of a 100-residue protein would require testing of 20100 combinations, which is beyond any existing experimental approach. In practice, selective modification of relatively few residues is sufficient for efficient improvement, functional enhancement and repurposing of existing proteins5. Moreover, computational methods have been developed to predict the locations and, in certain cases, identities of potentially productive mutations6-9. Importantly, all current approaches for prediction of hot spots and productive mutations rely heavily on structural information and/or bioinformatics, which is not always available for proteins of interest. Moreover, they offer a limited ability to identify beneficial mutations far from the active site, even though such changes may markedly improve the catalytic properties of an enzyme10. Machine learning methods have recently showed promise in predicting productive mutations11, but they frequently require large, high-quality training datasets, which are difficult to obtain in directed evolution experiments. Here we show that mutagenic hot spots in enzymes can be identified using NMR spectroscopy. In a proof-of-concept study, we converted myoglobin, a non-enzymatic oxygen storage protein, into a highly efficient Kemp eliminase using only three mutations. The observed levels of catalytic efficiency exceed those of proteins designed using current approaches and are similar with those of natural enzymes for the reactions that they are evolved to catalyse. Given the simplicity of this experimental approach, which requires no a priori structural or bioinformatic knowledge, we expect it to be widely applicable and to enable the full potential of directed enzyme evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大半个菜鸟完成签到,获得积分20
9秒前
大个应助ceeray23采纳,获得20
26秒前
34秒前
CipherSage应助ceeray23采纳,获得20
41秒前
41秒前
46秒前
49秒前
54秒前
害怕的板凳完成签到 ,获得积分10
58秒前
BowieHuang应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
寻道图强应助科研通管家采纳,获得50
1分钟前
ceeray23应助科研通管家采纳,获得30
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得300
1分钟前
爱科研的小凡完成签到,获得积分10
1分钟前
1分钟前
稳重的冷亦完成签到,获得积分10
1分钟前
caca完成签到,获得积分0
1分钟前
星辰大海应助ceeray23采纳,获得20
1分钟前
柳行天完成签到 ,获得积分10
1分钟前
汉堡包应助Cmqq采纳,获得10
1分钟前
1分钟前
Kraghc发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Kraghc完成签到,获得积分10
1分钟前
1分钟前
kkw发布了新的文献求助10
1分钟前
1分钟前
OnlyHarbour发布了新的文献求助10
1分钟前
Cmqq发布了新的文献求助10
1分钟前
小洛完成签到 ,获得积分10
2分钟前
凸迩丝儿完成签到 ,获得积分10
2分钟前
大模型应助ceeray23采纳,获得20
2分钟前
反恐分子应助ceeray23采纳,获得20
2分钟前
OnlyHarbour完成签到,获得积分20
2分钟前
我是老大应助Cmqq采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685512
关于积分的说明 14838542
捐赠科研通 4670527
什么是DOI,文献DOI怎么找? 2538202
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904