NMR-guided directed evolution

计算机科学 计算生物学 重新调整用途 化学 机器学习 生物 生态学
作者
Sagar Bhattacharya,Eleonora Margheritis,Katsuya Takahashi,Alona Kulesha,Areetha D’Souza,Inhye Kim,Jennifer H. Yoon,Jeremy R. H. Tame,Alexander N. Volkov,Olga V. Makhlynets,Ivan V. Korendovych
出处
期刊:Nature [Nature Portfolio]
卷期号:610 (7931): 389-393 被引量:49
标识
DOI:10.1038/s41586-022-05278-9
摘要

Directed evolution is a powerful tool for improving existing properties and imparting completely new functionalities to proteins1-4. Nonetheless, its potential in even small proteins is inherently limited by the astronomical number of possible amino acid sequences. Sampling the complete sequence space of a 100-residue protein would require testing of 20100 combinations, which is beyond any existing experimental approach. In practice, selective modification of relatively few residues is sufficient for efficient improvement, functional enhancement and repurposing of existing proteins5. Moreover, computational methods have been developed to predict the locations and, in certain cases, identities of potentially productive mutations6-9. Importantly, all current approaches for prediction of hot spots and productive mutations rely heavily on structural information and/or bioinformatics, which is not always available for proteins of interest. Moreover, they offer a limited ability to identify beneficial mutations far from the active site, even though such changes may markedly improve the catalytic properties of an enzyme10. Machine learning methods have recently showed promise in predicting productive mutations11, but they frequently require large, high-quality training datasets, which are difficult to obtain in directed evolution experiments. Here we show that mutagenic hot spots in enzymes can be identified using NMR spectroscopy. In a proof-of-concept study, we converted myoglobin, a non-enzymatic oxygen storage protein, into a highly efficient Kemp eliminase using only three mutations. The observed levels of catalytic efficiency exceed those of proteins designed using current approaches and are similar with those of natural enzymes for the reactions that they are evolved to catalyse. Given the simplicity of this experimental approach, which requires no a priori structural or bioinformatic knowledge, we expect it to be widely applicable and to enable the full potential of directed enzyme evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩可昕关注了科研通微信公众号
1秒前
852应助红白刀向前冲采纳,获得10
2秒前
2秒前
笨笨的初露完成签到,获得积分20
3秒前
研友_Lw4kGn发布了新的文献求助10
4秒前
5秒前
5秒前
852应助pocky采纳,获得10
6秒前
科研通AI5应助愤怒的小之采纳,获得10
6秒前
recovery发布了新的文献求助30
7秒前
共享精神应助杨诚采纳,获得10
7秒前
Chu_JH完成签到,获得积分10
7秒前
8秒前
8秒前
tao完成签到,获得积分10
8秒前
11秒前
迟到翘课翘完成签到 ,获得积分10
11秒前
科研废物发布了新的文献求助10
13秒前
科研通AI6应助笨笨的初露采纳,获得10
13秒前
13秒前
万能图书馆应助lpf采纳,获得10
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
16秒前
武婧完成签到,获得积分10
16秒前
Cino发布了新的文献求助10
17秒前
张锐斌完成签到,获得积分10
17秒前
NexusExplorer应助朱旭采纳,获得10
17秒前
19秒前
科研通AI6应助青年才俊采纳,获得30
19秒前
19秒前
小丸子发布了新的文献求助10
19秒前
浮游应助缘6688采纳,获得10
20秒前
20秒前
20秒前
HYYY发布了新的文献求助10
21秒前
风趣惜霜完成签到,获得积分10
21秒前
上官若男应助小鲤鱼采纳,获得10
22秒前
默默懿轩完成签到,获得积分10
22秒前
果果发布了新的文献求助100
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075569
求助须知:如何正确求助?哪些是违规求助? 4295278
关于积分的说明 13384033
捐赠科研通 4116979
什么是DOI,文献DOI怎么找? 2254606
邀请新用户注册赠送积分活动 1259239
关于科研通互助平台的介绍 1192002