NMR-guided directed evolution

计算机科学 计算生物学 重新调整用途 化学 机器学习 生物 生态学
作者
Sagar Bhattacharya,Eleonora Margheritis,Katsuya Takahashi,Alona Kulesha,Areetha D’Souza,Inhye Kim,Jennifer H. Yoon,Jeremy R. H. Tame,Alexander N. Volkov,Olga V. Makhlynets,Ivan V. Korendovych
出处
期刊:Nature [Nature Portfolio]
卷期号:610 (7931): 389-393 被引量:43
标识
DOI:10.1038/s41586-022-05278-9
摘要

Directed evolution is a powerful tool for improving existing properties and imparting completely new functionalities to proteins1-4. Nonetheless, its potential in even small proteins is inherently limited by the astronomical number of possible amino acid sequences. Sampling the complete sequence space of a 100-residue protein would require testing of 20100 combinations, which is beyond any existing experimental approach. In practice, selective modification of relatively few residues is sufficient for efficient improvement, functional enhancement and repurposing of existing proteins5. Moreover, computational methods have been developed to predict the locations and, in certain cases, identities of potentially productive mutations6-9. Importantly, all current approaches for prediction of hot spots and productive mutations rely heavily on structural information and/or bioinformatics, which is not always available for proteins of interest. Moreover, they offer a limited ability to identify beneficial mutations far from the active site, even though such changes may markedly improve the catalytic properties of an enzyme10. Machine learning methods have recently showed promise in predicting productive mutations11, but they frequently require large, high-quality training datasets, which are difficult to obtain in directed evolution experiments. Here we show that mutagenic hot spots in enzymes can be identified using NMR spectroscopy. In a proof-of-concept study, we converted myoglobin, a non-enzymatic oxygen storage protein, into a highly efficient Kemp eliminase using only three mutations. The observed levels of catalytic efficiency exceed those of proteins designed using current approaches and are similar with those of natural enzymes for the reactions that they are evolved to catalyse. Given the simplicity of this experimental approach, which requires no a priori structural or bioinformatic knowledge, we expect it to be widely applicable and to enable the full potential of directed enzyme evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
榜一大哥的负担完成签到 ,获得积分10
10秒前
Ray发布了新的文献求助10
13秒前
法外潮湿宝贝完成签到 ,获得积分10
19秒前
ceeray23应助科研通管家采纳,获得10
32秒前
634301059完成签到 ,获得积分10
39秒前
璇璇完成签到 ,获得积分10
41秒前
star完成签到,获得积分10
44秒前
Brave发布了新的文献求助10
48秒前
Perrylin718完成签到,获得积分10
53秒前
yzy完成签到,获得积分10
58秒前
回首不再是少年完成签到,获得积分0
1分钟前
baoxiaozhai完成签到 ,获得积分10
1分钟前
光亮的自行车完成签到,获得积分0
1分钟前
木之尹完成签到 ,获得积分10
1分钟前
小鱼医生完成签到 ,获得积分10
1分钟前
1分钟前
Slemon完成签到,获得积分10
1分钟前
缓慢乐天发布了新的文献求助10
1分钟前
咯咯咯完成签到 ,获得积分10
1分钟前
缓慢乐天完成签到,获得积分10
1分钟前
喵了个咪完成签到 ,获得积分10
1分钟前
文献完成签到 ,获得积分10
2分钟前
久伴久爱完成签到 ,获得积分10
2分钟前
陈醋塔塔完成签到,获得积分10
2分钟前
龙王爱吃糖完成签到 ,获得积分10
2分钟前
学术达人应助persist采纳,获得30
2分钟前
wyh295352318完成签到 ,获得积分10
2分钟前
2分钟前
1002SHIB完成签到,获得积分10
2分钟前
nihaolaojiu完成签到,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
sheetung完成签到,获得积分10
2分钟前
麦田麦兜完成签到,获得积分10
2分钟前
Shawn完成签到 ,获得积分10
2分钟前
Rayoo发布了新的文献求助10
2分钟前
辛勤的芾完成签到,获得积分10
2分钟前
佳期如梦完成签到 ,获得积分10
2分钟前
我是老大应助Rayoo采纳,获得10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495297
关于积分的说明 11076083
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783291
邀请新用户注册赠送积分活动 867589
科研通“疑难数据库(出版商)”最低求助积分说明 800839