NMR-guided directed evolution

计算机科学 计算生物学 重新调整用途 化学 机器学习 生物 生态学
作者
Sagar Bhattacharya,Eleonora Margheritis,Katsuya Takahashi,Alona Kulesha,Areetha D’Souza,Inhye Kim,Jennifer H. Yoon,Jeremy R. H. Tame,Alexander N. Volkov,Olga V. Makhlynets,Ivan V. Korendovych
出处
期刊:Nature [Springer Nature]
卷期号:610 (7931): 389-393 被引量:49
标识
DOI:10.1038/s41586-022-05278-9
摘要

Directed evolution is a powerful tool for improving existing properties and imparting completely new functionalities to proteins1-4. Nonetheless, its potential in even small proteins is inherently limited by the astronomical number of possible amino acid sequences. Sampling the complete sequence space of a 100-residue protein would require testing of 20100 combinations, which is beyond any existing experimental approach. In practice, selective modification of relatively few residues is sufficient for efficient improvement, functional enhancement and repurposing of existing proteins5. Moreover, computational methods have been developed to predict the locations and, in certain cases, identities of potentially productive mutations6-9. Importantly, all current approaches for prediction of hot spots and productive mutations rely heavily on structural information and/or bioinformatics, which is not always available for proteins of interest. Moreover, they offer a limited ability to identify beneficial mutations far from the active site, even though such changes may markedly improve the catalytic properties of an enzyme10. Machine learning methods have recently showed promise in predicting productive mutations11, but they frequently require large, high-quality training datasets, which are difficult to obtain in directed evolution experiments. Here we show that mutagenic hot spots in enzymes can be identified using NMR spectroscopy. In a proof-of-concept study, we converted myoglobin, a non-enzymatic oxygen storage protein, into a highly efficient Kemp eliminase using only three mutations. The observed levels of catalytic efficiency exceed those of proteins designed using current approaches and are similar with those of natural enzymes for the reactions that they are evolved to catalyse. Given the simplicity of this experimental approach, which requires no a priori structural or bioinformatic knowledge, we expect it to be widely applicable and to enable the full potential of directed enzyme evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助研友_pLwpKn采纳,获得30
刚刚
Hikx完成签到 ,获得积分10
刚刚
deer完成签到,获得积分10
1秒前
杨冠渊完成签到,获得积分20
1秒前
2秒前
2秒前
2秒前
xx发布了新的文献求助10
2秒前
田様应助wj采纳,获得10
2秒前
changhaowenzzz完成签到,获得积分10
2秒前
Yusang完成签到,获得积分10
3秒前
ctttt发布了新的文献求助10
3秒前
3秒前
快乐小菜瓜完成签到 ,获得积分10
3秒前
3秒前
3秒前
心落失完成签到,获得积分10
3秒前
研友_ZGAeoL完成签到,获得积分10
4秒前
4秒前
应急食品完成签到,获得积分10
5秒前
Lynn完成签到,获得积分10
6秒前
简单酒窝发布了新的文献求助10
6秒前
小小发布了新的文献求助30
6秒前
小二郎应助wenbin采纳,获得10
6秒前
7秒前
小蘑菇应助ohen67采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
123study0完成签到,获得积分10
7秒前
8秒前
楠楠DAYTOY发布了新的文献求助10
8秒前
Rocky_Qi发布了新的文献求助10
8秒前
cc发布了新的文献求助10
8秒前
杨冠渊发布了新的文献求助10
8秒前
9秒前
清蒸鱼发布了新的文献求助10
9秒前
Hien完成签到,获得积分10
9秒前
9秒前
ilihe应助dtcao采纳,获得10
9秒前
ding应助笨鸟先飞采纳,获得10
9秒前
领导范儿应助allsan采纳,获得20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665118
求助须知:如何正确求助?哪些是违规求助? 4875227
关于积分的说明 15112135
捐赠科研通 4824320
什么是DOI,文献DOI怎么找? 2582694
邀请新用户注册赠送积分活动 1536665
关于科研通互助平台的介绍 1495279