已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

NMR-guided directed evolution

计算机科学 计算生物学 重新调整用途 化学 机器学习 生物 生态学
作者
Sagar Bhattacharya,Eleonora Margheritis,Katsuya Takahashi,Alona Kulesha,Areetha D’Souza,Inhye Kim,Jennifer H. Yoon,Jeremy R. H. Tame,Alexander N. Volkov,Olga V. Makhlynets,Ivan V. Korendovych
出处
期刊:Nature [Springer Nature]
卷期号:610 (7931): 389-393 被引量:26
标识
DOI:10.1038/s41586-022-05278-9
摘要

Directed evolution is a powerful tool for improving existing properties and imparting completely new functionalities to proteins1-4. Nonetheless, its potential in even small proteins is inherently limited by the astronomical number of possible amino acid sequences. Sampling the complete sequence space of a 100-residue protein would require testing of 20100 combinations, which is beyond any existing experimental approach. In practice, selective modification of relatively few residues is sufficient for efficient improvement, functional enhancement and repurposing of existing proteins5. Moreover, computational methods have been developed to predict the locations and, in certain cases, identities of potentially productive mutations6-9. Importantly, all current approaches for prediction of hot spots and productive mutations rely heavily on structural information and/or bioinformatics, which is not always available for proteins of interest. Moreover, they offer a limited ability to identify beneficial mutations far from the active site, even though such changes may markedly improve the catalytic properties of an enzyme10. Machine learning methods have recently showed promise in predicting productive mutations11, but they frequently require large, high-quality training datasets, which are difficult to obtain in directed evolution experiments. Here we show that mutagenic hot spots in enzymes can be identified using NMR spectroscopy. In a proof-of-concept study, we converted myoglobin, a non-enzymatic oxygen storage protein, into a highly efficient Kemp eliminase using only three mutations. The observed levels of catalytic efficiency exceed those of proteins designed using current approaches and are similar with those of natural enzymes for the reactions that they are evolved to catalyse. Given the simplicity of this experimental approach, which requires no a priori structural or bioinformatic knowledge, we expect it to be widely applicable and to enable the full potential of directed enzyme evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
容止发布了新的文献求助10
2秒前
勺子爱西瓜完成签到,获得积分10
2秒前
WMT发布了新的文献求助30
4秒前
4秒前
土豆你个西红柿完成签到 ,获得积分10
4秒前
西红柿炒番茄应助ggg采纳,获得50
5秒前
5秒前
执着的如容完成签到,获得积分10
6秒前
moonlimb完成签到 ,获得积分10
7秒前
10秒前
satohoang发布了新的文献求助10
11秒前
前程似锦完成签到 ,获得积分10
11秒前
搜集达人应助凌代萱采纳,获得10
16秒前
钮祜禄萱完成签到 ,获得积分10
16秒前
16秒前
芊芊完成签到 ,获得积分10
18秒前
雨yu完成签到 ,获得积分10
18秒前
刚刚好完成签到 ,获得积分10
18秒前
Chen完成签到 ,获得积分10
21秒前
美好的惜天完成签到 ,获得积分10
25秒前
25秒前
榴莲姑娘完成签到 ,获得积分10
27秒前
ZZ完成签到,获得积分10
27秒前
3113129605完成签到 ,获得积分10
28秒前
缓慢又蓝发布了新的文献求助10
30秒前
王晓静完成签到 ,获得积分10
31秒前
勤能补拙完成签到 ,获得积分10
31秒前
fpaper完成签到,获得积分10
31秒前
32秒前
36秒前
monair完成签到 ,获得积分10
36秒前
毓香谷的春天完成签到 ,获得积分10
37秒前
宣灵薇完成签到,获得积分0
39秒前
桃桃子完成签到,获得积分10
41秒前
42秒前
追三完成签到 ,获得积分10
42秒前
左右逢我完成签到 ,获得积分10
42秒前
直率栾完成签到 ,获得积分10
43秒前
我爱康康文献完成签到 ,获得积分10
44秒前
养乐多敬你完成签到 ,获得积分10
45秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801716
关于积分的说明 7845638
捐赠科研通 2459139
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628634
版权声明 601727