NMR-guided directed evolution

计算机科学 计算生物学 重新调整用途 化学 机器学习 生物 生态学
作者
Sagar Bhattacharya,Eleonora Margheritis,Katsuya Takahashi,Alona Kulesha,Areetha D’Souza,Inhye Kim,Jennifer H. Yoon,Jeremy R. H. Tame,Alexander N. Volkov,Olga V. Makhlynets,Ivan V. Korendovych
出处
期刊:Nature [Springer Nature]
卷期号:610 (7931): 389-393 被引量:49
标识
DOI:10.1038/s41586-022-05278-9
摘要

Directed evolution is a powerful tool for improving existing properties and imparting completely new functionalities to proteins1-4. Nonetheless, its potential in even small proteins is inherently limited by the astronomical number of possible amino acid sequences. Sampling the complete sequence space of a 100-residue protein would require testing of 20100 combinations, which is beyond any existing experimental approach. In practice, selective modification of relatively few residues is sufficient for efficient improvement, functional enhancement and repurposing of existing proteins5. Moreover, computational methods have been developed to predict the locations and, in certain cases, identities of potentially productive mutations6-9. Importantly, all current approaches for prediction of hot spots and productive mutations rely heavily on structural information and/or bioinformatics, which is not always available for proteins of interest. Moreover, they offer a limited ability to identify beneficial mutations far from the active site, even though such changes may markedly improve the catalytic properties of an enzyme10. Machine learning methods have recently showed promise in predicting productive mutations11, but they frequently require large, high-quality training datasets, which are difficult to obtain in directed evolution experiments. Here we show that mutagenic hot spots in enzymes can be identified using NMR spectroscopy. In a proof-of-concept study, we converted myoglobin, a non-enzymatic oxygen storage protein, into a highly efficient Kemp eliminase using only three mutations. The observed levels of catalytic efficiency exceed those of proteins designed using current approaches and are similar with those of natural enzymes for the reactions that they are evolved to catalyse. Given the simplicity of this experimental approach, which requires no a priori structural or bioinformatic knowledge, we expect it to be widely applicable and to enable the full potential of directed enzyme evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助bmj采纳,获得10
刚刚
大模型应助坦率晓霜采纳,获得10
1秒前
1秒前
1秒前
pluto应助ichia采纳,获得10
1秒前
wwwwww关注了科研通微信公众号
2秒前
4秒前
4秒前
5秒前
李爱国应助熬夜拜拜采纳,获得10
5秒前
煎饼狗子发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
MO发布了新的文献求助10
8秒前
8秒前
芪苓关注了科研通微信公众号
9秒前
老实的百招完成签到,获得积分10
9秒前
xwt发布了新的文献求助10
10秒前
10秒前
张巨锋发布了新的文献求助10
11秒前
jiabangou发布了新的文献求助10
11秒前
13秒前
13秒前
乐乐应助Wguan采纳,获得10
13秒前
13秒前
完美世界应助Archer采纳,获得10
13秒前
14秒前
LLSSLL完成签到,获得积分10
14秒前
崔宇完成签到,获得积分10
15秒前
15秒前
明亮的海冬完成签到,获得积分10
16秒前
嘻嘻哈哈完成签到,获得积分10
16秒前
阿珊完成签到,获得积分10
16秒前
熬夜拜拜发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
嘿嘿完成签到,获得积分10
17秒前
坦率晓霜发布了新的文献求助10
18秒前
风趣雪冥完成签到,获得积分10
19秒前
崔宇发布了新的文献求助10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186