亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

NMR-guided directed evolution

计算机科学 计算生物学 重新调整用途 化学 机器学习 生物 生态学
作者
Sagar Bhattacharya,Eleonora Margheritis,Katsuya Takahashi,Alona Kulesha,Areetha D’Souza,Inhye Kim,Jennifer H. Yoon,Jeremy R. H. Tame,Alexander N. Volkov,Olga V. Makhlynets,Ivan V. Korendovych
出处
期刊:Nature [Springer Nature]
卷期号:610 (7931): 389-393 被引量:49
标识
DOI:10.1038/s41586-022-05278-9
摘要

Directed evolution is a powerful tool for improving existing properties and imparting completely new functionalities to proteins1-4. Nonetheless, its potential in even small proteins is inherently limited by the astronomical number of possible amino acid sequences. Sampling the complete sequence space of a 100-residue protein would require testing of 20100 combinations, which is beyond any existing experimental approach. In practice, selective modification of relatively few residues is sufficient for efficient improvement, functional enhancement and repurposing of existing proteins5. Moreover, computational methods have been developed to predict the locations and, in certain cases, identities of potentially productive mutations6-9. Importantly, all current approaches for prediction of hot spots and productive mutations rely heavily on structural information and/or bioinformatics, which is not always available for proteins of interest. Moreover, they offer a limited ability to identify beneficial mutations far from the active site, even though such changes may markedly improve the catalytic properties of an enzyme10. Machine learning methods have recently showed promise in predicting productive mutations11, but they frequently require large, high-quality training datasets, which are difficult to obtain in directed evolution experiments. Here we show that mutagenic hot spots in enzymes can be identified using NMR spectroscopy. In a proof-of-concept study, we converted myoglobin, a non-enzymatic oxygen storage protein, into a highly efficient Kemp eliminase using only three mutations. The observed levels of catalytic efficiency exceed those of proteins designed using current approaches and are similar with those of natural enzymes for the reactions that they are evolved to catalyse. Given the simplicity of this experimental approach, which requires no a priori structural or bioinformatic knowledge, we expect it to be widely applicable and to enable the full potential of directed enzyme evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助1461644768采纳,获得10
3秒前
沧浪完成签到,获得积分10
4秒前
histamin完成签到,获得积分10
4秒前
qiu关闭了qiu文献求助
6秒前
三年两篇以上SCI完成签到 ,获得积分20
9秒前
Criminology34应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
熬夜波比应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
绮罗完成签到 ,获得积分10
18秒前
qiu发布了新的文献求助10
19秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
20秒前
胖胖的江鸟完成签到 ,获得积分10
20秒前
27秒前
诸葛不亮完成签到,获得积分10
27秒前
qiu完成签到,获得积分10
32秒前
布林发布了新的文献求助10
33秒前
王敏娜完成签到 ,获得积分10
34秒前
肥牛完成签到,获得积分10
35秒前
Jasper应助zyy采纳,获得10
36秒前
Jasper应助Shin采纳,获得10
36秒前
menyu完成签到,获得积分10
41秒前
111完成签到,获得积分10
42秒前
43秒前
zsyf完成签到,获得积分10
43秒前
布林完成签到,获得积分20
43秒前
menyu发布了新的文献求助10
45秒前
抚琴祛魅完成签到 ,获得积分10
45秒前
abc完成签到,获得积分10
48秒前
不想起名发布了新的文献求助10
48秒前
51秒前
Vince发布了新的文献求助10
54秒前
秦时明月完成签到,获得积分10
56秒前
Jasper应助LONG采纳,获得10
1分钟前
爱笑的无心完成签到 ,获得积分10
1分钟前
tianming完成签到,获得积分10
1分钟前
ding应助请输入昵称采纳,获得10
1分钟前
伯云完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681194
求助须知:如何正确求助?哪些是违规求助? 5005631
关于积分的说明 15175172
捐赠科研通 4840849
什么是DOI,文献DOI怎么找? 2594550
邀请新用户注册赠送积分活动 1547639
关于科研通互助平台的介绍 1505605