NMR-guided directed evolution

计算机科学 计算生物学 重新调整用途 化学 机器学习 生物 生态学
作者
Sagar Bhattacharya,Eleonora Margheritis,Katsuya Takahashi,Alona Kulesha,Areetha D’Souza,Inhye Kim,Jennifer H. Yoon,Jeremy R. H. Tame,Alexander N. Volkov,Olga V. Makhlynets,Ivan V. Korendovych
出处
期刊:Nature [Springer Nature]
卷期号:610 (7931): 389-393 被引量:49
标识
DOI:10.1038/s41586-022-05278-9
摘要

Directed evolution is a powerful tool for improving existing properties and imparting completely new functionalities to proteins1-4. Nonetheless, its potential in even small proteins is inherently limited by the astronomical number of possible amino acid sequences. Sampling the complete sequence space of a 100-residue protein would require testing of 20100 combinations, which is beyond any existing experimental approach. In practice, selective modification of relatively few residues is sufficient for efficient improvement, functional enhancement and repurposing of existing proteins5. Moreover, computational methods have been developed to predict the locations and, in certain cases, identities of potentially productive mutations6-9. Importantly, all current approaches for prediction of hot spots and productive mutations rely heavily on structural information and/or bioinformatics, which is not always available for proteins of interest. Moreover, they offer a limited ability to identify beneficial mutations far from the active site, even though such changes may markedly improve the catalytic properties of an enzyme10. Machine learning methods have recently showed promise in predicting productive mutations11, but they frequently require large, high-quality training datasets, which are difficult to obtain in directed evolution experiments. Here we show that mutagenic hot spots in enzymes can be identified using NMR spectroscopy. In a proof-of-concept study, we converted myoglobin, a non-enzymatic oxygen storage protein, into a highly efficient Kemp eliminase using only three mutations. The observed levels of catalytic efficiency exceed those of proteins designed using current approaches and are similar with those of natural enzymes for the reactions that they are evolved to catalyse. Given the simplicity of this experimental approach, which requires no a priori structural or bioinformatic knowledge, we expect it to be widely applicable and to enable the full potential of directed enzyme evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荣艺完成签到,获得积分10
刚刚
Lucas应助Berne采纳,获得10
刚刚
xiaobai完成签到,获得积分10
刚刚
123关闭了123文献求助
1秒前
Lucas应助玉玊采纳,获得10
2秒前
Akim应助读书的时候采纳,获得10
3秒前
Owen应助谦让烤鸡采纳,获得10
3秒前
5秒前
6秒前
Liyaya完成签到,获得积分10
6秒前
整齐发箍完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
Yuanyuan发布了新的文献求助10
10秒前
11秒前
Hello应助TTTHANKS采纳,获得10
11秒前
12秒前
13秒前
忧郁小刺猬完成签到,获得积分10
14秒前
15秒前
flytime1115完成签到,获得积分10
15秒前
15秒前
15秒前
谦让烤鸡完成签到,获得积分10
16秒前
16秒前
小雨完成签到,获得积分10
17秒前
君仔完成签到,获得积分10
18秒前
33完成签到,获得积分10
18秒前
易银辉发布了新的文献求助10
18秒前
动听的雪卉完成签到,获得积分10
20秒前
zkwgly发布了新的文献求助10
21秒前
马东发布了新的文献求助10
21秒前
胸大无肌完成签到,获得积分10
21秒前
hyscoll发布了新的文献求助10
21秒前
kkm发布了新的文献求助10
21秒前
23秒前
23秒前
勤奋一只完成签到,获得积分10
23秒前
史前巨怪完成签到,获得积分0
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745664
求助须知:如何正确求助?哪些是违规求助? 5428112
关于积分的说明 15353826
捐赠科研通 4885612
什么是DOI,文献DOI怎么找? 2626862
邀请新用户注册赠送积分活动 1575370
关于科研通互助平台的介绍 1532109