Defeating hydrogen-induced grain-boundary embrittlement via triggering unusual interfacial segregation in FeCrCoNi-type high-entropy alloys

材料科学 晶界 脆化 氢脆 冶金 高熵合金 延展性(地球科学) 合金 晶间断裂 晶间腐蚀 穿晶断裂 微观结构 复合材料 腐蚀 蠕动 有机化学 化学
作者
Qing Li,Jinyong Mo,Shihua Ma,Fenghui Duan,Yakai Zhao,Shaofei Liu,W.H. Liu,Shijun Zhao,C.T. Liu,Peter K. Liaw,Tao Yang
出处
期刊:Acta Materialia [Elsevier]
卷期号:241: 118410-118410 被引量:27
标识
DOI:10.1016/j.actamat.2022.118410
摘要

Metallic materials are mostly susceptible to hydrogen embrittlement (HE), which severely deteriorates their mechanical properties and causes catastrophic failures with poor ductility. In this study, we found that such a long-standing HE problem can be effectively eliminated in the Fex(CrCoNi)1-x face-centered-cubic (fcc) high-entropy alloys (HEAs) by triggering the localized segregation of Cr at grain boundaries (GBs). It was revealed that increasing the Fe concentration from 2.5 to 25 at. % leads to substantially improved HE resistance, i.e., the ductility loss decreases from 70% to 6%. Meanwhile, the fracture mode transformed from the intergranular to the transgranular mode. Multiscale microstructural analyses demonstrated that the Fe2.5Cr32.5Co32.5Ni32.5 and Fe25Cr25Co25Ni25 alloys show negligible differences in the phase structure, grain size, and grain-boundary (GB) character. However, interestingly, the near atomic-resolution elemental mapping revealed that an increased Fe concentration promotes the nanoscale Cr segregation at the GBs, which is primarily motivated by the strong repulsive force between Cr and Fe and the low self-binding energy of Cr. Such unusual interfacial segregation of Cr, which has not been reported before in the Fe25Cr25Co25Ni25 alloy, helps enhance the GBs’ cohesive strength and suppresses the local hydrogen segregation at GBs due to the deceased GB energy, leading to the outstanding HE resistance. These findings decipher the origins of the vastly-improved HE resistance in current FeCrCoNi-type HEAs, and meanwhile, provide new insight into the future development of novel high-performance structural alloys with extraordinary immunity to hydrogen-induced damages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stuffmatter发布了新的文献求助10
刚刚
眯眯眼的裙子完成签到 ,获得积分10
刚刚
高大的曼寒完成签到,获得积分20
1秒前
2秒前
2秒前
lin发布了新的文献求助10
3秒前
小左发布了新的文献求助10
3秒前
3秒前
番茄乌梅完成签到,获得积分10
3秒前
流年发布了新的文献求助10
4秒前
sadsada发布了新的文献求助10
4秒前
我是老大应助hsy采纳,获得10
5秒前
酷波er应助细心的小鸽子采纳,获得10
5秒前
maorongfu456完成签到,获得积分10
6秒前
番茄乌梅发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
好名字发布了新的文献求助10
7秒前
纪震宇发布了新的文献求助10
7秒前
7秒前
星辰大海应助stuffmatter采纳,获得10
8秒前
8秒前
西洲发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
ting完成签到,获得积分20
11秒前
花子完成签到,获得积分10
11秒前
上官若男应助yidezeng采纳,获得10
12秒前
Ren发布了新的文献求助10
12秒前
13秒前
天真初蝶发布了新的文献求助10
13秒前
XiaoHU发布了新的文献求助10
13秒前
麻花辫女孩完成签到,获得积分10
13秒前
学术猪八戒完成签到,获得积分20
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126