亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fully automatic estimation of pelvic sagittal inclination from anterior-posterior radiography image using deep learning framework.

分割 方向(向量空间) 骨盆 卷积神经网络 图像质量 医学
作者
Ata Jodeiri,Reza Aghaeizadeh Zoroofi,Yuta Hiasa,Masaki Takao,Nobuhiko Sugano,Yoshinobu Sato,Yoshito Otake
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:184: 105282- 被引量:10
标识
DOI:10.1016/j.cmpb.2019.105282
摘要

Abstract Background and Objective Malposition of the acetabular component causes dislocation and prosthetic impingement after Total Hip Arthroplasty (THA), which significantly affects the postoperative quality of life and implant longevity. The position of the acetabular component is determined by the Pelvic Sagittal Inclination (PSI), which not only varies among different people but also changes in different positions. It is important to recognize individual dynamic changes of the PSI for patient-specific planning of the THA. Previously PSI was estimated by registering the CT and radiography images. In this study, we introduce a new method for accurate estimation of functional PSI without requiring CT image in order to lower radiation exposure of the patient which opens up the possibility of increasing its application in a larger number of hospitals where CT is not acquired as a routine protocol. Methods The proposed method consists of two main steps: First, the Mask R-CNN framework was employed to segment the pelvic shape from the background in the radiography images. Then, following the segmentation network, another convolutional network regressed the PSI angle. We employed a transfer learning paradigm where the network weights were initialized by non-medical images followed by fine-tuning using radiography images. Furthermore, in the training process, augmented data was generated to improve the performance of both networks. We analyzed the role of segmentation network in our system and investigated the Mask R-CNN performance in comparison with the U-Net, which is commonly used for the medical image segmentation. Results In this study, the Mask R-CNN utilizing multi-task learning, transfer learning, and data augmentation techniques achieve 0.960 ± 0.008 DICE coefficient, which significantly outperforms the U-Net. The cascaded system is capable of estimating the PSI with 4.04° ± 3.39° error for the radiography images. Conclusions The proposed framework suggests a fully automatic and robust estimation of the PSI using only an anterior-posterior radiography image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助ceeray23采纳,获得20
11秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
MchemG应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
MchemG应助科研通管家采纳,获得10
13秒前
24秒前
29秒前
Simonking发布了新的文献求助10
36秒前
秋作完成签到,获得积分10
38秒前
秋天发布了新的文献求助10
46秒前
zzgpku完成签到,获得积分0
47秒前
SciGPT应助andrele采纳,获得10
47秒前
下一块蛋糕完成签到 ,获得积分10
1分钟前
清脆安南完成签到 ,获得积分10
1分钟前
史前巨怪完成签到,获得积分10
1分钟前
Perry完成签到,获得积分10
1分钟前
1分钟前
思源应助神勇朝雪采纳,获得10
1分钟前
1分钟前
哈哈发布了新的文献求助30
1分钟前
秋天完成签到,获得积分10
1分钟前
1分钟前
andrele发布了新的文献求助30
1分钟前
神勇朝雪发布了新的文献求助10
1分钟前
dongyajingggggg完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671283
求助须知:如何正确求助?哪些是违规求助? 3228138
关于积分的说明 9778521
捐赠科研通 2938378
什么是DOI,文献DOI怎么找? 1609975
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 735991