已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Long Short-Term Memory Recurrent Neural Networks for Multiple Diseases Risk Prediction by Leveraging Longitudinal Medical Records

医学诊断 计算机科学 病历 诊断代码 疾病 人工神经网络 健康档案 循环神经网络 编码(集合论) 机器学习 人工智能 数据挖掘 医学 医疗保健 内科学 病理 经济 集合(抽象数据类型) 程序设计语言 环境卫生 人口 经济增长
作者
Tingyan Wang,Tian Yuan-xin,Robin G. Qiu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 2337-2346 被引量:38
标识
DOI:10.1109/jbhi.2019.2962366
摘要

Individuals suffer from chronic diseases without being identified in time, which brings lots of burden of disease to the society. This paper presents a multiple disease risk prediction method to systematically assess future disease risks for patients based on their longitudinal medical records. In this study, medical diagnoses based on International Classification of Diseases (ICD) are aggregated into different levels for prediction to meet the needs of different stakeholders. The proposed approach gets validated using two independent hospital medical datasets, which includes 7105 patients with 18, 893 patients and 4170 patients with 13, 124 visits, respectively. The initial analysis reveals a high variation in patients' characteristics. The study demonstrates that recurrent neural network with long-short time memory units performs well in different levels of diagnosis aggregation. Especially, the results show that the developed model can be well applied to predicting future disease risks for patients, with the exact-match score of 98.90% and 95.12% using 3-digit ICD code aggregation, while 96.60% and 96.83% using 4-digit ICD code aggregation for these two datasets, respectively. Moreover, the approach can be developed as a reference tool for hospital information systems, enhancing patients' healthcare management over time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助ceeray23采纳,获得20
1秒前
3秒前
朝阳区李知恩应助gxfang采纳,获得30
3秒前
8秒前
9秒前
雷雨完成签到,获得积分10
11秒前
英俊的铭应助lxjjj采纳,获得10
12秒前
12秒前
稳重岩完成签到 ,获得积分10
12秒前
PennySun发布了新的文献求助10
13秒前
15秒前
tjnksy完成签到,获得积分10
15秒前
科研通AI5应助雷雨采纳,获得10
15秒前
卧镁铀钳完成签到 ,获得积分10
16秒前
华仔应助雨做的云霞采纳,获得10
18秒前
888完成签到 ,获得积分10
19秒前
踩点行动完成签到,获得积分10
22秒前
koi完成签到 ,获得积分10
24秒前
27秒前
雨做的云霞完成签到,获得积分10
27秒前
ypqisgood完成签到,获得积分10
27秒前
36秒前
不想制造学术垃圾的垃圾完成签到 ,获得积分10
38秒前
39秒前
科研通AI5应助PennySun采纳,获得10
40秒前
严逍遥应助姆姆没买采纳,获得10
40秒前
闻巷雨完成签到 ,获得积分10
40秒前
宅宅完成签到 ,获得积分10
43秒前
想不出来完成签到 ,获得积分10
44秒前
小狗不是抠脚兵完成签到 ,获得积分10
44秒前
SciGPT应助骆十八采纳,获得10
47秒前
JamesPei应助小付采纳,获得10
48秒前
51秒前
56秒前
小北发布了新的文献求助10
56秒前
58秒前
Jasper应助修管子采纳,获得10
1分钟前
1分钟前
高贵毛巾完成签到 ,获得积分10
1分钟前
丘比特应助小北采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5172821
求助须知:如何正确求助?哪些是违规求助? 4362970
关于积分的说明 13584901
捐赠科研通 4211189
什么是DOI,文献DOI怎么找? 2309687
邀请新用户注册赠送积分活动 1308759
关于科研通互助平台的介绍 1256014