Long Short-Term Memory Recurrent Neural Networks for Multiple Diseases Risk Prediction by Leveraging Longitudinal Medical Records

医学诊断 计算机科学 病历 诊断代码 疾病 人工神经网络 健康档案 循环神经网络 编码(集合论) 机器学习 人工智能 数据挖掘 医学 医疗保健 内科学 病理 经济 集合(抽象数据类型) 程序设计语言 环境卫生 人口 经济增长
作者
Tingyan Wang,Tian Yuan-xin,Robin G. Qiu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 2337-2346 被引量:38
标识
DOI:10.1109/jbhi.2019.2962366
摘要

Individuals suffer from chronic diseases without being identified in time, which brings lots of burden of disease to the society. This paper presents a multiple disease risk prediction method to systematically assess future disease risks for patients based on their longitudinal medical records. In this study, medical diagnoses based on International Classification of Diseases (ICD) are aggregated into different levels for prediction to meet the needs of different stakeholders. The proposed approach gets validated using two independent hospital medical datasets, which includes 7105 patients with 18, 893 patients and 4170 patients with 13, 124 visits, respectively. The initial analysis reveals a high variation in patients' characteristics. The study demonstrates that recurrent neural network with long-short time memory units performs well in different levels of diagnosis aggregation. Especially, the results show that the developed model can be well applied to predicting future disease risks for patients, with the exact-match score of 98.90% and 95.12% using 3-digit ICD code aggregation, while 96.60% and 96.83% using 4-digit ICD code aggregation for these two datasets, respectively. Moreover, the approach can be developed as a reference tool for hospital information systems, enhancing patients' healthcare management over time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斑驳完成签到,获得积分10
刚刚
刚刚
Sayhai发布了新的文献求助10
1秒前
1秒前
wanmy完成签到,获得积分10
1秒前
mengqing完成签到 ,获得积分10
1秒前
2秒前
2秒前
chrisio应助蛋蛋白采纳,获得10
3秒前
3秒前
在水一方应助SHIKI采纳,获得10
3秒前
battle完成签到 ,获得积分10
3秒前
3秒前
香蕉觅云应助liu采纳,获得10
4秒前
小蘑菇应助高翔采纳,获得10
5秒前
corainder发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
Wow发布了新的文献求助10
6秒前
Lucas应助SZY采纳,获得10
7秒前
7秒前
FashionBoy应助谢同学采纳,获得10
7秒前
7秒前
7秒前
所所应助Sayhai采纳,获得10
7秒前
8秒前
有求必_应发布了新的文献求助10
8秒前
暮光不ling发布了新的文献求助10
9秒前
9秒前
孤独的夜行喵关注了科研通微信公众号
9秒前
9秒前
9秒前
mia发布了新的文献求助10
9秒前
9秒前
我的白起是国服完成签到 ,获得积分10
10秒前
蛋蛋白完成签到,获得积分20
11秒前
个性的紫菜应助yulia采纳,获得20
11秒前
11秒前
Gotyababy发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403