Long Short-Term Memory Recurrent Neural Networks for Multiple Diseases Risk Prediction by Leveraging Longitudinal Medical Records

医学诊断 计算机科学 病历 诊断代码 疾病 人工神经网络 健康档案 循环神经网络 编码(集合论) 机器学习 人工智能 数据挖掘 医学 医疗保健 内科学 病理 经济 集合(抽象数据类型) 程序设计语言 环境卫生 人口 经济增长
作者
Tingyan Wang,Tian Yuan-xin,Robin G. Qiu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 2337-2346 被引量:38
标识
DOI:10.1109/jbhi.2019.2962366
摘要

Individuals suffer from chronic diseases without being identified in time, which brings lots of burden of disease to the society. This paper presents a multiple disease risk prediction method to systematically assess future disease risks for patients based on their longitudinal medical records. In this study, medical diagnoses based on International Classification of Diseases (ICD) are aggregated into different levels for prediction to meet the needs of different stakeholders. The proposed approach gets validated using two independent hospital medical datasets, which includes 7105 patients with 18, 893 patients and 4170 patients with 13, 124 visits, respectively. The initial analysis reveals a high variation in patients' characteristics. The study demonstrates that recurrent neural network with long-short time memory units performs well in different levels of diagnosis aggregation. Especially, the results show that the developed model can be well applied to predicting future disease risks for patients, with the exact-match score of 98.90% and 95.12% using 3-digit ICD code aggregation, while 96.60% and 96.83% using 4-digit ICD code aggregation for these two datasets, respectively. Moreover, the approach can be developed as a reference tool for hospital information systems, enhancing patients' healthcare management over time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三省发布了新的文献求助10
1秒前
1秒前
魏少爷发布了新的文献求助50
1秒前
快乐保温杯完成签到 ,获得积分10
1秒前
2秒前
cdaib发布了新的文献求助10
2秒前
Manana完成签到 ,获得积分10
2秒前
科研通AI2S应助迎海采纳,获得10
2秒前
零度酷冷完成签到,获得积分10
3秒前
搞笑5次发布了新的文献求助10
4秒前
言非离完成签到,获得积分10
5秒前
shinn发布了新的文献求助10
5秒前
迎海完成签到,获得积分10
6秒前
爆米花应助WWWUBING采纳,获得10
7秒前
7秒前
7秒前
NingSun完成签到,获得积分20
8秒前
rrrrr发布了新的文献求助10
8秒前
Lucas应助科研通管家采纳,获得10
9秒前
iNk应助科研通管家采纳,获得10
9秒前
柯一一应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
iNk应助科研通管家采纳,获得10
9秒前
柯一一应助科研通管家采纳,获得10
10秒前
柯一一应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
柯一一应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
柯一一应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967402
求助须知:如何正确求助?哪些是违规求助? 3512674
关于积分的说明 11164607
捐赠科研通 3247562
什么是DOI,文献DOI怎么找? 1793955
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498