A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images

分割 人工智能 计算机科学 图像分割 甲状腺 结核(地质) 甲状腺结节 模式识别(心理学) 分类 区域增长 尺度空间分割 机器学习 医学 内科学 生物 古生物学
作者
Junying Chen,Haijun You,Kai Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:185: 105329-105329 被引量:94
标识
DOI:10.1016/j.cmpb.2020.105329
摘要

Background and objective Thyroid image segmentation is an indispensable part in computer-aided diagnosis systems and medical image diagnoses of thyroid diseases. There have been dozens of studies on thyroid gland segmentation and thyroid nodule segmentation in ultrasound images. The aim of this work is to categorize and review the thyroid gland segmentation and thyroid nodule segmentation methods in medical ultrasound. Methods This work proposes a categorization approach of thyroid gland segmentation and thyroid nodule segmentation methods according to the theoretical bases of segmentation methods. The segmentation methods are categorized into four groups, including contour and shape based methods, region based methods, machine and deep learning methods and hybrid methods. The representative articles are reviewed with detailed descriptions of methods and analyses of correlations between methods. The evaluation metrics for the reviewed segmentation methods are named uniformly in this work. The segmentation performance results using the uniformly named evaluation metrics are compared. Results After careful investigation, 28 representative papers are selected for comprehensive analyses and comparisons in this review. The dominant thyroid gland segmentation methods are machine and deep learning methods. The training of massive data makes these models have better segmentation performance and robustness. But deep learning models usually require plenty of marked training data and long training time. For thyroid nodule segmentation, the most common methods are contour and shape based methods, which have good segmentation performance. However, most of them are tested on small datasets. Conclusions Based on the comprehensive consideration of application scenario, image features, method practicability and segmentation performance, the appropriate segmentation method for specific situation can be selected. Furthermore, several limitations of current thyroid ultrasound image segmentation methods are presented, which may be overcome in future studies, such as the segmentation of pathological or abnormal thyroid glands, identification of the specific nodular diseases, and the standard thyroid ultrasound image datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
明理的天蓝完成签到,获得积分10
1秒前
咳咳发布了新的文献求助10
1秒前
木叶研完成签到,获得积分10
1秒前
无花果应助通~采纳,获得10
1秒前
2秒前
3秒前
周助发布了新的文献求助10
3秒前
伯赏秋白完成签到,获得积分10
3秒前
慕青应助sunzhiyu233采纳,获得10
3秒前
Sherwin完成签到,获得积分10
3秒前
羽毛完成签到,获得积分20
4秒前
xiongjian发布了新的文献求助10
4秒前
一方通行完成签到 ,获得积分10
4秒前
4秒前
monster0101完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
Stvn完成签到,获得积分20
6秒前
核桃发布了新的文献求助10
6秒前
跳跃的太阳完成签到,获得积分10
7秒前
7秒前
enoot完成签到,获得积分10
7秒前
dalin完成签到,获得积分10
7秒前
YE发布了新的文献求助10
7秒前
buno应助外向的沅采纳,获得10
7秒前
体贴啤酒发布了新的文献求助10
8秒前
花痴的谷雪完成签到,获得积分10
8秒前
8秒前
圈圈发布了新的文献求助10
8秒前
亮亮完成签到,获得积分10
8秒前
没有稗子完成签到 ,获得积分10
8秒前
科研小民工应助明亮的斩采纳,获得30
8秒前
9秒前
9秒前
小可发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740