A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images

分割 人工智能 计算机科学 图像分割 甲状腺 结核(地质) 甲状腺结节 模式识别(心理学) 分类 区域增长 尺度空间分割 机器学习 医学 内科学 生物 古生物学
作者
Junying Chen,Haijun You,Kai Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:185: 105329-105329 被引量:94
标识
DOI:10.1016/j.cmpb.2020.105329
摘要

Background and objective Thyroid image segmentation is an indispensable part in computer-aided diagnosis systems and medical image diagnoses of thyroid diseases. There have been dozens of studies on thyroid gland segmentation and thyroid nodule segmentation in ultrasound images. The aim of this work is to categorize and review the thyroid gland segmentation and thyroid nodule segmentation methods in medical ultrasound. Methods This work proposes a categorization approach of thyroid gland segmentation and thyroid nodule segmentation methods according to the theoretical bases of segmentation methods. The segmentation methods are categorized into four groups, including contour and shape based methods, region based methods, machine and deep learning methods and hybrid methods. The representative articles are reviewed with detailed descriptions of methods and analyses of correlations between methods. The evaluation metrics for the reviewed segmentation methods are named uniformly in this work. The segmentation performance results using the uniformly named evaluation metrics are compared. Results After careful investigation, 28 representative papers are selected for comprehensive analyses and comparisons in this review. The dominant thyroid gland segmentation methods are machine and deep learning methods. The training of massive data makes these models have better segmentation performance and robustness. But deep learning models usually require plenty of marked training data and long training time. For thyroid nodule segmentation, the most common methods are contour and shape based methods, which have good segmentation performance. However, most of them are tested on small datasets. Conclusions Based on the comprehensive consideration of application scenario, image features, method practicability and segmentation performance, the appropriate segmentation method for specific situation can be selected. Furthermore, several limitations of current thyroid ultrasound image segmentation methods are presented, which may be overcome in future studies, such as the segmentation of pathological or abnormal thyroid glands, identification of the specific nodular diseases, and the standard thyroid ultrasound image datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一人摩羯发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
王倩发布了新的文献求助10
1秒前
大模型应助郑敦锦采纳,获得10
2秒前
子民发布了新的文献求助10
2秒前
上野英三郎的秋天完成签到 ,获得积分10
3秒前
LQS完成签到,获得积分10
3秒前
莎莎发布了新的文献求助10
4秒前
qq发布了新的文献求助10
4秒前
xh发布了新的文献求助10
4秒前
杨旭发布了新的文献求助10
5秒前
香蕉觅云应助Divya采纳,获得10
5秒前
小张张发布了新的文献求助10
5秒前
Jasper应助Vv采纳,获得10
5秒前
青松发布了新的文献求助10
6秒前
6秒前
6秒前
不安寄容完成签到,获得积分10
7秒前
多托郭发布了新的文献求助10
7秒前
renpan2024完成签到,获得积分20
8秒前
9秒前
bmn完成签到,获得积分10
9秒前
gui发布了新的文献求助20
9秒前
bxj完成签到,获得积分10
9秒前
9秒前
硫酸镁发布了新的文献求助10
11秒前
NexusExplorer应助qq采纳,获得10
11秒前
11秒前
12秒前
13秒前
gentledragon发布了新的文献求助10
13秒前
ye完成签到,获得积分10
14秒前
科研通AI2S应助拉长的凌旋采纳,获得10
14秒前
Li发布了新的文献求助30
14秒前
15秒前
15秒前
sakuraroad发布了新的文献求助10
16秒前
Vv发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3127482
求助须知:如何正确求助?哪些是违规求助? 2778315
关于积分的说明 7738877
捐赠科研通 2433618
什么是DOI,文献DOI怎么找? 1292999
科研通“疑难数据库(出版商)”最低求助积分说明 623109
版权声明 600489