A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images

分割 人工智能 计算机科学 图像分割 甲状腺 结核(地质) 甲状腺结节 模式识别(心理学) 分类 区域增长 尺度空间分割 机器学习 医学 内科学 生物 古生物学
作者
Junying Chen,Haijun You,Kai Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:185: 105329-105329 被引量:105
标识
DOI:10.1016/j.cmpb.2020.105329
摘要

Background and objective Thyroid image segmentation is an indispensable part in computer-aided diagnosis systems and medical image diagnoses of thyroid diseases. There have been dozens of studies on thyroid gland segmentation and thyroid nodule segmentation in ultrasound images. The aim of this work is to categorize and review the thyroid gland segmentation and thyroid nodule segmentation methods in medical ultrasound. Methods This work proposes a categorization approach of thyroid gland segmentation and thyroid nodule segmentation methods according to the theoretical bases of segmentation methods. The segmentation methods are categorized into four groups, including contour and shape based methods, region based methods, machine and deep learning methods and hybrid methods. The representative articles are reviewed with detailed descriptions of methods and analyses of correlations between methods. The evaluation metrics for the reviewed segmentation methods are named uniformly in this work. The segmentation performance results using the uniformly named evaluation metrics are compared. Results After careful investigation, 28 representative papers are selected for comprehensive analyses and comparisons in this review. The dominant thyroid gland segmentation methods are machine and deep learning methods. The training of massive data makes these models have better segmentation performance and robustness. But deep learning models usually require plenty of marked training data and long training time. For thyroid nodule segmentation, the most common methods are contour and shape based methods, which have good segmentation performance. However, most of them are tested on small datasets. Conclusions Based on the comprehensive consideration of application scenario, image features, method practicability and segmentation performance, the appropriate segmentation method for specific situation can be selected. Furthermore, several limitations of current thyroid ultrasound image segmentation methods are presented, which may be overcome in future studies, such as the segmentation of pathological or abnormal thyroid glands, identification of the specific nodular diseases, and the standard thyroid ultrasound image datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cain完成签到,获得积分10
刚刚
巴达天使完成签到,获得积分10
刚刚
刚刚
核桃应助坐井观天采纳,获得10
刚刚
jjgbmt完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
烟花应助塞上牧羊采纳,获得10
1秒前
neckerzhu完成签到 ,获得积分10
1秒前
可爱的函函应助Liolsy采纳,获得10
2秒前
2秒前
老迟到的秋完成签到,获得积分10
2秒前
3秒前
3秒前
传奇3应助jianguo采纳,获得10
3秒前
Miles发布了新的文献求助30
4秒前
星辰大海应助wen采纳,获得30
4秒前
4秒前
小小完成签到 ,获得积分10
4秒前
追梦完成签到 ,获得积分10
4秒前
111完成签到,获得积分10
4秒前
5秒前
威武的天德完成签到,获得积分10
5秒前
咿咿呀呀发布了新的文献求助20
5秒前
紫紫完成签到,获得积分10
6秒前
zxzb发布了新的文献求助10
6秒前
大个应助G秋采纳,获得10
6秒前
jjgbmt发布了新的文献求助10
7秒前
louis发布了新的文献求助10
7秒前
8秒前
miaoww发布了新的文献求助10
8秒前
8秒前
8秒前
celeby发布了新的文献求助10
8秒前
小白发布了新的文献求助10
9秒前
10秒前
longchb发布了新的文献求助10
10秒前
淡淡涫完成签到,获得积分10
10秒前
YataMisaki发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993