A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images

分割 人工智能 计算机科学 图像分割 甲状腺 结核(地质) 甲状腺结节 模式识别(心理学) 分类 区域增长 尺度空间分割 机器学习 医学诊断 计算机视觉 基于分割的对象分类 医学影像学 放射科 深度学习 超声波 医学
作者
Junying Chen,Haijun You,Kai Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:185: 105329-105329 被引量:128
标识
DOI:10.1016/j.cmpb.2020.105329
摘要

Background and objective Thyroid image segmentation is an indispensable part in computer-aided diagnosis systems and medical image diagnoses of thyroid diseases. There have been dozens of studies on thyroid gland segmentation and thyroid nodule segmentation in ultrasound images. The aim of this work is to categorize and review the thyroid gland segmentation and thyroid nodule segmentation methods in medical ultrasound. Methods This work proposes a categorization approach of thyroid gland segmentation and thyroid nodule segmentation methods according to the theoretical bases of segmentation methods. The segmentation methods are categorized into four groups, including contour and shape based methods, region based methods, machine and deep learning methods and hybrid methods. The representative articles are reviewed with detailed descriptions of methods and analyses of correlations between methods. The evaluation metrics for the reviewed segmentation methods are named uniformly in this work. The segmentation performance results using the uniformly named evaluation metrics are compared. Results After careful investigation, 28 representative papers are selected for comprehensive analyses and comparisons in this review. The dominant thyroid gland segmentation methods are machine and deep learning methods. The training of massive data makes these models have better segmentation performance and robustness. But deep learning models usually require plenty of marked training data and long training time. For thyroid nodule segmentation, the most common methods are contour and shape based methods, which have good segmentation performance. However, most of them are tested on small datasets. Conclusions Based on the comprehensive consideration of application scenario, image features, method practicability and segmentation performance, the appropriate segmentation method for specific situation can be selected. Furthermore, several limitations of current thyroid ultrasound image segmentation methods are presented, which may be overcome in future studies, such as the segmentation of pathological or abnormal thyroid glands, identification of the specific nodular diseases, and the standard thyroid ultrasound image datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
changping应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
farmeryxt应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
忽闻水完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得30
2秒前
changping应助科研通管家采纳,获得10
2秒前
cc应助科研通管家采纳,获得10
2秒前
farmeryxt应助科研通管家采纳,获得10
3秒前
tuanheqi应助科研通管家采纳,获得150
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
上官若男应助CHEN采纳,获得10
4秒前
科研大牛发布了新的文献求助10
5秒前
5秒前
8秒前
彭于晏应助琥珀采纳,获得10
8秒前
英吉利25发布了新的文献求助10
10秒前
10秒前
暖暖完成签到,获得积分10
10秒前
11秒前
现实的筮发布了新的文献求助10
11秒前
fufu完成签到 ,获得积分10
12秒前
大局已定完成签到,获得积分10
13秒前
nishuixingzhou关注了科研通微信公众号
13秒前
15秒前
宵夜发布了新的文献求助10
15秒前
Orange应助笨笨千秋采纳,获得10
15秒前
和谐孤风发布了新的文献求助10
16秒前
暖暖发布了新的文献求助10
16秒前
16秒前
Chen驳回了pkqaifd应助
16秒前
17秒前
lalala发布了新的文献求助10
18秒前
浮游应助kx采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298978
求助须知:如何正确求助?哪些是违规求助? 4447324
关于积分的说明 13842385
捐赠科研通 4332903
什么是DOI,文献DOI怎么找? 2378395
邀请新用户注册赠送积分活动 1373694
关于科研通互助平台的介绍 1339263