已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images

分割 人工智能 计算机科学 图像分割 甲状腺 结核(地质) 甲状腺结节 模式识别(心理学) 分类 区域增长 尺度空间分割 机器学习 医学 内科学 生物 古生物学
作者
Junying Chen,Haijun You,Kai Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:185: 105329-105329 被引量:105
标识
DOI:10.1016/j.cmpb.2020.105329
摘要

Background and objective Thyroid image segmentation is an indispensable part in computer-aided diagnosis systems and medical image diagnoses of thyroid diseases. There have been dozens of studies on thyroid gland segmentation and thyroid nodule segmentation in ultrasound images. The aim of this work is to categorize and review the thyroid gland segmentation and thyroid nodule segmentation methods in medical ultrasound. Methods This work proposes a categorization approach of thyroid gland segmentation and thyroid nodule segmentation methods according to the theoretical bases of segmentation methods. The segmentation methods are categorized into four groups, including contour and shape based methods, region based methods, machine and deep learning methods and hybrid methods. The representative articles are reviewed with detailed descriptions of methods and analyses of correlations between methods. The evaluation metrics for the reviewed segmentation methods are named uniformly in this work. The segmentation performance results using the uniformly named evaluation metrics are compared. Results After careful investigation, 28 representative papers are selected for comprehensive analyses and comparisons in this review. The dominant thyroid gland segmentation methods are machine and deep learning methods. The training of massive data makes these models have better segmentation performance and robustness. But deep learning models usually require plenty of marked training data and long training time. For thyroid nodule segmentation, the most common methods are contour and shape based methods, which have good segmentation performance. However, most of them are tested on small datasets. Conclusions Based on the comprehensive consideration of application scenario, image features, method practicability and segmentation performance, the appropriate segmentation method for specific situation can be selected. Furthermore, several limitations of current thyroid ultrasound image segmentation methods are presented, which may be overcome in future studies, such as the segmentation of pathological or abnormal thyroid glands, identification of the specific nodular diseases, and the standard thyroid ultrasound image datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Olivia发布了新的文献求助10
2秒前
可爱的函函应助langqi采纳,获得10
3秒前
6秒前
7秒前
Crystal完成签到 ,获得积分10
9秒前
Zlq发布了新的文献求助10
9秒前
11秒前
肖易应助幸福大白采纳,获得10
11秒前
zyq完成签到 ,获得积分10
12秒前
故城完成签到 ,获得积分10
12秒前
车灵寒发布了新的文献求助20
17秒前
脑洞疼应助Olivia采纳,获得30
17秒前
18秒前
wab完成签到,获得积分0
18秒前
弎夜发布了新的文献求助30
20秒前
忧心的网络完成签到,获得积分20
22秒前
不想干活应助幸福大白采纳,获得10
24秒前
不想干活应助幸福大白采纳,获得10
24秒前
万能图书馆应助幸福大白采纳,获得10
24秒前
领导范儿应助coollz采纳,获得10
25秒前
ccm应助科研通管家采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
26秒前
汉堡包应助科研三轮车采纳,获得10
30秒前
34秒前
Eliauk完成签到 ,获得积分10
38秒前
活泼尔烟发布了新的文献求助10
40秒前
43秒前
45秒前
赘婿应助车灵寒采纳,获得10
47秒前
47秒前
崔梦楠完成签到 ,获得积分10
48秒前
HUNGJJ发布了新的文献求助10
49秒前
无花果应助大佬求帮采纳,获得10
49秒前
Rainnnn发布了新的文献求助10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542