A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images

分割 人工智能 计算机科学 图像分割 甲状腺 结核(地质) 甲状腺结节 模式识别(心理学) 分类 区域增长 尺度空间分割 机器学习 医学诊断 计算机视觉 基于分割的对象分类 医学影像学 放射科 深度学习 超声波 医学
作者
Junying Chen,Haijun You,Kai Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:185: 105329-105329 被引量:128
标识
DOI:10.1016/j.cmpb.2020.105329
摘要

Background and objective Thyroid image segmentation is an indispensable part in computer-aided diagnosis systems and medical image diagnoses of thyroid diseases. There have been dozens of studies on thyroid gland segmentation and thyroid nodule segmentation in ultrasound images. The aim of this work is to categorize and review the thyroid gland segmentation and thyroid nodule segmentation methods in medical ultrasound. Methods This work proposes a categorization approach of thyroid gland segmentation and thyroid nodule segmentation methods according to the theoretical bases of segmentation methods. The segmentation methods are categorized into four groups, including contour and shape based methods, region based methods, machine and deep learning methods and hybrid methods. The representative articles are reviewed with detailed descriptions of methods and analyses of correlations between methods. The evaluation metrics for the reviewed segmentation methods are named uniformly in this work. The segmentation performance results using the uniformly named evaluation metrics are compared. Results After careful investigation, 28 representative papers are selected for comprehensive analyses and comparisons in this review. The dominant thyroid gland segmentation methods are machine and deep learning methods. The training of massive data makes these models have better segmentation performance and robustness. But deep learning models usually require plenty of marked training data and long training time. For thyroid nodule segmentation, the most common methods are contour and shape based methods, which have good segmentation performance. However, most of them are tested on small datasets. Conclusions Based on the comprehensive consideration of application scenario, image features, method practicability and segmentation performance, the appropriate segmentation method for specific situation can be selected. Furthermore, several limitations of current thyroid ultrasound image segmentation methods are presented, which may be overcome in future studies, such as the segmentation of pathological or abnormal thyroid glands, identification of the specific nodular diseases, and the standard thyroid ultrasound image datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
MM完成签到,获得积分10
3秒前
pure完成签到 ,获得积分10
3秒前
浮游应助Su_Zehe采纳,获得10
3秒前
李健应助拼搏的学长采纳,获得10
5秒前
WXR发布了新的文献求助30
5秒前
何包蛋发布了新的文献求助10
6秒前
华仔应助留胡子的白柏采纳,获得30
6秒前
7秒前
大个应助邵shuo采纳,获得10
7秒前
普里克先森完成签到 ,获得积分10
9秒前
10秒前
123完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
Owen应助阿华采纳,获得30
12秒前
12秒前
PetrichorF完成签到 ,获得积分10
12秒前
顺利发布了新的文献求助10
13秒前
科研通AI2S应助闹闹加油采纳,获得30
13秒前
14秒前
阿不思完成签到 ,获得积分10
15秒前
123发布了新的文献求助10
15秒前
852应助123456采纳,获得10
17秒前
zwxzghgz完成签到,获得积分10
17秒前
19秒前
拼搏的学长完成签到,获得积分10
19秒前
邵shuo发布了新的文献求助10
20秒前
lyyyyl发布了新的文献求助10
21秒前
研友_LpvQlZ发布了新的文献求助30
22秒前
烟花应助妃莫笑采纳,获得10
22秒前
惠慧完成签到,获得积分10
23秒前
科研通AI6应助123采纳,获得10
24秒前
panhaoyu完成签到,获得积分10
24秒前
顾矜应助qqq采纳,获得10
24秒前
and999完成签到,获得积分10
26秒前
panhaoyu发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421856
求助须知:如何正确求助?哪些是违规求助? 4536767
关于积分的说明 14155159
捐赠科研通 4453354
什么是DOI,文献DOI怎么找? 2442854
邀请新用户注册赠送积分活动 1434227
关于科研通互助平台的介绍 1411370