CoLe-CNN: Context-learning convolutional neural network with adaptive loss function for lung nodule segmentation

卷积神经网络 计算机科学 背景(考古学) 人工智能 分割 结核(地质) 深度学习 模式识别(心理学) 生物 古生物学
作者
Giuseppe Pezzano,Vicent Ribas Ripoll,Petia Radeva
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:198: 105792-105792 被引量:46
标识
DOI:10.1016/j.cmpb.2020.105792
摘要

Abstract Background and objective:An accurate segmentation of lung nodules in computed tomography images is a crucial step for the physical characterization of the tumour. Being often completely manually accomplished, nodule segmentation turns to be a tedious and time-consuming procedure and this represents a high obstacle in clinical practice. In this paper, we propose a novel Convolutional Neural Network for nodule segmentation that combines a light and efficient architecture with innovative loss function and segmentation strategy. Methods:In contrast to most of the standard end-to-end architectures for nodule segmentation, our network learns the context of the nodules by producing two masks representing all the background and secondary-important elements in the Computed Tomography scan. The nodule is detected by subtracting the context from the original scan image. Additionally, we introduce an asymmetric loss function that automatically compensates for potential errors in the nodule annotations. We trained and tested our Neural Network on the public LIDC-IDRI database, compared it with the state of the art and run a pseudo-Turing test between four radiologists and the network. Results:The results proved that the behaviour of the algorithm is very near to the human performance and its segmentation masks are almost indistinguishable from the ones made by the radiologists. Our method clearly outperforms the state of the art on CT nodule segmentation in terms of F1 score and IoU of 3.3 % and 4.7 % , respectively. Conclusions: The main structure of the network ensures all the properties of the UNet architecture, while the Multi Convolutional Layers give a more accurate pattern recognition. The newly adopted solutions also increase the details on the border of the nodule, even under the noisiest conditions. This method can be applied now for single CT slice nodule segmentation and it represents a starting point for the future development of a fully automatic 3D segmentation software.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
YLY发布了新的文献求助30
1秒前
丁丽发布了新的文献求助10
1秒前
燕子归来完成签到,获得积分10
1秒前
明眸完成签到,获得积分10
2秒前
自然1111发布了新的文献求助10
3秒前
3秒前
4秒前
罗永昊发布了新的文献求助10
4秒前
袁气小笼包完成签到,获得积分10
5秒前
5秒前
CC完成签到,获得积分10
5秒前
bkagyin应助刘梦婷采纳,获得10
6秒前
6秒前
方圆几里发布了新的文献求助30
6秒前
CodeCraft应助Yulin Yu采纳,获得10
6秒前
Matthewwt完成签到,获得积分10
6秒前
wanci应助冷艳招牌采纳,获得10
6秒前
公孙朝雨完成签到 ,获得积分10
6秒前
kirito发布了新的文献求助10
6秒前
乐哉完成签到,获得积分10
7秒前
正直无极发布了新的文献求助10
7秒前
狂野忆文完成签到,获得积分10
7秒前
8秒前
1243437374完成签到,获得积分10
8秒前
全糖完成签到,获得积分10
9秒前
9秒前
情怀应助THEEVE采纳,获得10
9秒前
zsyf完成签到,获得积分10
10秒前
10秒前
ding应助丁丽采纳,获得10
10秒前
11秒前
畅快成风发布了新的文献求助10
11秒前
11秒前
11秒前
13秒前
13秒前
jenningseastera应助狂野忆文采纳,获得10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186