CoLe-CNN: Context-learning convolutional neural network with adaptive loss function for lung nodule segmentation

卷积神经网络 计算机科学 背景(考古学) 人工智能 分割 结核(地质) 深度学习 模式识别(心理学) 生物 古生物学
作者
Giuseppe Pezzano,Vicent Ribas Ripoll,Petia Radeva
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:198: 105792-105792 被引量:46
标识
DOI:10.1016/j.cmpb.2020.105792
摘要

Abstract Background and objective:An accurate segmentation of lung nodules in computed tomography images is a crucial step for the physical characterization of the tumour. Being often completely manually accomplished, nodule segmentation turns to be a tedious and time-consuming procedure and this represents a high obstacle in clinical practice. In this paper, we propose a novel Convolutional Neural Network for nodule segmentation that combines a light and efficient architecture with innovative loss function and segmentation strategy. Methods:In contrast to most of the standard end-to-end architectures for nodule segmentation, our network learns the context of the nodules by producing two masks representing all the background and secondary-important elements in the Computed Tomography scan. The nodule is detected by subtracting the context from the original scan image. Additionally, we introduce an asymmetric loss function that automatically compensates for potential errors in the nodule annotations. We trained and tested our Neural Network on the public LIDC-IDRI database, compared it with the state of the art and run a pseudo-Turing test between four radiologists and the network. Results:The results proved that the behaviour of the algorithm is very near to the human performance and its segmentation masks are almost indistinguishable from the ones made by the radiologists. Our method clearly outperforms the state of the art on CT nodule segmentation in terms of F1 score and IoU of 3.3 % and 4.7 % , respectively. Conclusions: The main structure of the network ensures all the properties of the UNet architecture, while the Multi Convolutional Layers give a more accurate pattern recognition. The newly adopted solutions also increase the details on the border of the nodule, even under the noisiest conditions. This method can be applied now for single CT slice nodule segmentation and it represents a starting point for the future development of a fully automatic 3D segmentation software.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋的刺猬完成签到,获得积分10
刚刚
惠无剑完成签到,获得积分10
刚刚
2秒前
2秒前
2秒前
3秒前
xinxin完成签到 ,获得积分10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
不配.应助科研通管家采纳,获得20
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
旱田蜗牛发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
XZZH发布了新的文献求助10
7秒前
LXL9527发布了新的文献求助30
8秒前
8秒前
8秒前
Ma发布了新的文献求助10
8秒前
djhakhsahdiw完成签到,获得积分10
9秒前
Orange应助要吃烧饼么采纳,获得10
10秒前
fifteen发布了新的文献求助10
10秒前
九月悬婵发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
开朗雅霜发布了新的文献求助10
11秒前
不安的斑马完成签到,获得积分10
12秒前
山上完成签到,获得积分10
12秒前
lbyscu完成签到 ,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153887
求助须知:如何正确求助?哪些是违规求助? 2804911
关于积分的说明 7862225
捐赠科研通 2462979
什么是DOI,文献DOI怎么找? 1311070
科研通“疑难数据库(出版商)”最低求助积分说明 629429
版权声明 601821