CoLe-CNN: Context-learning convolutional neural network with adaptive loss function for lung nodule segmentation

卷积神经网络 计算机科学 背景(考古学) 人工智能 分割 结核(地质) 深度学习 模式识别(心理学) 生物 古生物学
作者
Giuseppe Pezzano,Vicent Ribas Ripoll,Petia Radeva
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:198: 105792-105792 被引量:46
标识
DOI:10.1016/j.cmpb.2020.105792
摘要

Abstract Background and objective:An accurate segmentation of lung nodules in computed tomography images is a crucial step for the physical characterization of the tumour. Being often completely manually accomplished, nodule segmentation turns to be a tedious and time-consuming procedure and this represents a high obstacle in clinical practice. In this paper, we propose a novel Convolutional Neural Network for nodule segmentation that combines a light and efficient architecture with innovative loss function and segmentation strategy. Methods:In contrast to most of the standard end-to-end architectures for nodule segmentation, our network learns the context of the nodules by producing two masks representing all the background and secondary-important elements in the Computed Tomography scan. The nodule is detected by subtracting the context from the original scan image. Additionally, we introduce an asymmetric loss function that automatically compensates for potential errors in the nodule annotations. We trained and tested our Neural Network on the public LIDC-IDRI database, compared it with the state of the art and run a pseudo-Turing test between four radiologists and the network. Results:The results proved that the behaviour of the algorithm is very near to the human performance and its segmentation masks are almost indistinguishable from the ones made by the radiologists. Our method clearly outperforms the state of the art on CT nodule segmentation in terms of F1 score and IoU of 3.3 % and 4.7 % , respectively. Conclusions: The main structure of the network ensures all the properties of the UNet architecture, while the Multi Convolutional Layers give a more accurate pattern recognition. The newly adopted solutions also increase the details on the border of the nodule, even under the noisiest conditions. This method can be applied now for single CT slice nodule segmentation and it represents a starting point for the future development of a fully automatic 3D segmentation software.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荔枝完成签到,获得积分20
刚刚
刚刚
1秒前
许多知识完成签到,获得积分10
1秒前
缓慢的战斗机完成签到,获得积分20
2秒前
圣晟胜发布了新的文献求助10
2秒前
科研通AI5应助nextconnie采纳,获得10
3秒前
陈朝旧迹完成签到,获得积分10
3秒前
无花果应助虚心海燕采纳,获得10
4秒前
sun发布了新的文献求助30
5秒前
5秒前
KBYer完成签到,获得积分10
5秒前
FashionBoy应助阳阳采纳,获得10
5秒前
许多知识发布了新的文献求助10
6秒前
苏源智完成签到,获得积分10
6秒前
Andy完成签到 ,获得积分10
8秒前
明理晓霜发布了新的文献求助10
10秒前
ZHANGMANLI0422关注了科研通微信公众号
10秒前
M先生发布了新的文献求助30
11秒前
FashionBoy应助许多知识采纳,获得10
12秒前
Poyd完成签到,获得积分10
15秒前
15秒前
故意的傲玉应助tao_blue采纳,获得10
16秒前
16秒前
kid1912完成签到,获得积分0
16秒前
小马甲应助一网小海蜇采纳,获得10
19秒前
专一的笑阳完成签到 ,获得积分10
19秒前
xuesensu完成签到 ,获得积分10
23秒前
豌豆完成签到,获得积分10
24秒前
M先生完成签到,获得积分10
24秒前
25秒前
27秒前
科研通AI5应助sun采纳,获得10
27秒前
shitzu完成签到 ,获得积分10
28秒前
choco发布了新的文献求助10
30秒前
31秒前
李健的小迷弟应助sun采纳,获得10
31秒前
Jzhang应助liyuchen采纳,获得10
31秒前
魏伯安发布了新的文献求助30
31秒前
jjjjjj发布了新的文献求助30
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849