Energy-Efficient Provisioning for Service Function Chains to Support Delay-Sensitive Applications in Network Function Virtualization

计算机科学 服务器 供应 计算机网络 虚拟化 能源消耗 云计算 软件部署 数据中心 分布式计算 虚拟机 操作系统 生态学 生物
作者
Gang Sun,Run Zhou,Jian Sun,Hongfang Yu,Athanasios V. Vasilakos
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (7): 6116-6131 被引量:66
标识
DOI:10.1109/jiot.2020.2970995
摘要

The efficient deployment of virtual network functions (VNFs) for network service provisioning is key for achieving network function virtualization (NFV); however, most existing studies address only offline or one-off deployments of service function chains (SFCs) while neglecting the dynamic (i.e., online) deployment and expansion requirements. In particular, many methods of energy/resource cost reduction are achieved by merging VNFs. However, the energy waste and device wear for large-scale collections of servers (e.g., cloud networks and data centers) caused by sporadic request updating are ignored. To solve these problems, we propose an energy-aware routing and adaptive delayed shutdown (EAR-ADS) algorithm for dynamic SFC deployment, which includes the following features: 1) energy-aware routing (EAR): by considering a practical deployment environment, a flexible solution is developed based on reusing open servers and selecting paths with the aims of balancing energy and resources and minimizing the total cost and 2) adaptive delayed shutdown (ADS): the delayed shutdown time of the servers can be flexibly adjusted in accordance with the usage of each device in each time slot, thus eliminating the no-load wait time of the servers and frequent on/off switching. Therefore, the EAR-ADS can achieve dual-energy savings by both decreasing the number of open servers and reducing the idle/switching energy consumption of these servers. The simulation results show that EAR-ADS not only minimizes the cost of energy and resources but also achieves an excellent success rate and stability. Moreover, EAR-ADS is efficient compared with an improved Markov algorithm (SAMA), reducing the average deployment time by more than a factor of 40.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
laura完成签到,获得积分10
刚刚
aa完成签到,获得积分10
刚刚
CC完成签到,获得积分10
刚刚
1秒前
半颗柠檬发布了新的文献求助10
1秒前
粗暴的达发布了新的文献求助10
1秒前
1秒前
Mr_老旭完成签到,获得积分10
1秒前
Akari完成签到,获得积分10
2秒前
想飞的猫完成签到,获得积分10
2秒前
所所应助琪琪扬扬采纳,获得10
2秒前
north完成签到,获得积分10
3秒前
Li818完成签到,获得积分10
3秒前
刘钱美子完成签到,获得积分10
3秒前
3秒前
爆米花应助夏侯觅风采纳,获得10
4秒前
孤傲的静脉完成签到,获得积分10
4秒前
阿芙乐尔完成签到 ,获得积分10
4秒前
纵马长歌完成签到,获得积分10
4秒前
tjpuzhang完成签到 ,获得积分10
4秒前
逝水无痕完成签到,获得积分10
4秒前
uu发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
卷王完成签到,获得积分10
5秒前
Anyemzl完成签到,获得积分10
6秒前
阿玖完成签到 ,获得积分10
6秒前
6秒前
monocle发布了新的文献求助10
6秒前
tinna完成签到,获得积分10
6秒前
你好发布了新的文献求助10
7秒前
明亮紫易完成签到,获得积分10
7秒前
zh完成签到,获得积分10
7秒前
科研一坤年完成签到,获得积分10
8秒前
Liu发布了新的文献求助10
8秒前
xxl完成签到,获得积分10
8秒前
KL发布了新的文献求助10
8秒前
瑞克五代完成签到,获得积分10
9秒前
9秒前
chloe完成签到,获得积分10
9秒前
迷你的雅霜完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977