Energy-Efficient Provisioning for Service Function Chains to Support Delay-Sensitive Applications in Network Function Virtualization

计算机科学 服务器 供应 计算机网络 虚拟化 能源消耗 云计算 软件部署 数据中心 分布式计算 虚拟机 操作系统 生态学 生物
作者
Gang Sun,Run Zhou,Jian Sun,Hongfang Yu,Athanasios V. Vasilakos
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (7): 6116-6131 被引量:66
标识
DOI:10.1109/jiot.2020.2970995
摘要

The efficient deployment of virtual network functions (VNFs) for network service provisioning is key for achieving network function virtualization (NFV); however, most existing studies address only offline or one-off deployments of service function chains (SFCs) while neglecting the dynamic (i.e., online) deployment and expansion requirements. In particular, many methods of energy/resource cost reduction are achieved by merging VNFs. However, the energy waste and device wear for large-scale collections of servers (e.g., cloud networks and data centers) caused by sporadic request updating are ignored. To solve these problems, we propose an energy-aware routing and adaptive delayed shutdown (EAR-ADS) algorithm for dynamic SFC deployment, which includes the following features: 1) energy-aware routing (EAR): by considering a practical deployment environment, a flexible solution is developed based on reusing open servers and selecting paths with the aims of balancing energy and resources and minimizing the total cost and 2) adaptive delayed shutdown (ADS): the delayed shutdown time of the servers can be flexibly adjusted in accordance with the usage of each device in each time slot, thus eliminating the no-load wait time of the servers and frequent on/off switching. Therefore, the EAR-ADS can achieve dual-energy savings by both decreasing the number of open servers and reducing the idle/switching energy consumption of these servers. The simulation results show that EAR-ADS not only minimizes the cost of energy and resources but also achieves an excellent success rate and stability. Moreover, EAR-ADS is efficient compared with an improved Markov algorithm (SAMA), reducing the average deployment time by more than a factor of 40.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huhuiya完成签到 ,获得积分10
刚刚
1秒前
li发布了新的文献求助10
2秒前
李爱国应助杨小鸿采纳,获得10
2秒前
5秒前
6秒前
天天快乐应助li采纳,获得10
7秒前
fafa发布了新的文献求助10
8秒前
9秒前
爱听歌的熊仔完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
w123发布了新的文献求助10
11秒前
打打应助Zyc采纳,获得10
12秒前
有本事1234完成签到,获得积分10
12秒前
haru完成签到,获得积分10
14秒前
14秒前
科研通AI6.1应助尊敬的采纳,获得10
15秒前
陈豆豆发布了新的文献求助10
15秒前
yang发布了新的文献求助10
16秒前
16秒前
JamesPei应助xutaiyu采纳,获得10
18秒前
19秒前
HWX完成签到 ,获得积分10
19秒前
LJQ发布了新的文献求助10
19秒前
Jessie完成签到,获得积分10
19秒前
w123完成签到,获得积分10
20秒前
Dream完成签到,获得积分0
21秒前
大模型应助陈豆豆采纳,获得10
21秒前
山井寿完成签到 ,获得积分10
21秒前
跳跳熊完成签到,获得积分10
21秒前
22秒前
研友_8KAzAn完成签到,获得积分10
22秒前
24秒前
Zyc发布了新的文献求助10
25秒前
乐观的穆关注了科研通微信公众号
25秒前
李木子完成签到 ,获得积分10
27秒前
wayne完成签到 ,获得积分10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044