Energy-Efficient Provisioning for Service Function Chains to Support Delay-Sensitive Applications in Network Function Virtualization

计算机科学 服务器 供应 计算机网络 虚拟化 能源消耗 云计算 软件部署 数据中心 分布式计算 虚拟机 操作系统 生态学 生物
作者
Gang Sun,Run Zhou,Jian Sun,Hongfang Yu,Athanasios V. Vasilakos
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (7): 6116-6131 被引量:66
标识
DOI:10.1109/jiot.2020.2970995
摘要

The efficient deployment of virtual network functions (VNFs) for network service provisioning is key for achieving network function virtualization (NFV); however, most existing studies address only offline or one-off deployments of service function chains (SFCs) while neglecting the dynamic (i.e., online) deployment and expansion requirements. In particular, many methods of energy/resource cost reduction are achieved by merging VNFs. However, the energy waste and device wear for large-scale collections of servers (e.g., cloud networks and data centers) caused by sporadic request updating are ignored. To solve these problems, we propose an energy-aware routing and adaptive delayed shutdown (EAR-ADS) algorithm for dynamic SFC deployment, which includes the following features: 1) energy-aware routing (EAR): by considering a practical deployment environment, a flexible solution is developed based on reusing open servers and selecting paths with the aims of balancing energy and resources and minimizing the total cost and 2) adaptive delayed shutdown (ADS): the delayed shutdown time of the servers can be flexibly adjusted in accordance with the usage of each device in each time slot, thus eliminating the no-load wait time of the servers and frequent on/off switching. Therefore, the EAR-ADS can achieve dual-energy savings by both decreasing the number of open servers and reducing the idle/switching energy consumption of these servers. The simulation results show that EAR-ADS not only minimizes the cost of energy and resources but also achieves an excellent success rate and stability. Moreover, EAR-ADS is efficient compared with an improved Markov algorithm (SAMA), reducing the average deployment time by more than a factor of 40.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuli发布了新的文献求助10
刚刚
默默的晓兰完成签到,获得积分20
刚刚
wuyu完成签到,获得积分10
1秒前
monlyly完成签到 ,获得积分10
1秒前
pwq发布了新的文献求助10
1秒前
1秒前
实验鱼完成签到,获得积分10
1秒前
星河完成签到,获得积分10
1秒前
2秒前
2秒前
kongchao008发布了新的文献求助10
2秒前
科研通AI6应助魔幻安筠采纳,获得10
2秒前
2秒前
CipherSage应助kyt采纳,获得10
2秒前
3秒前
hq发布了新的文献求助10
3秒前
结实寒梦完成签到 ,获得积分20
3秒前
YAN关闭了YAN文献求助
3秒前
小刺猬完成签到,获得积分10
4秒前
青青发布了新的文献求助20
4秒前
称心映梦完成签到 ,获得积分10
4秒前
yangyang发布了新的文献求助10
4秒前
自然从寒完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
ZMR121121发布了新的文献求助10
6秒前
尹辉完成签到,获得积分20
6秒前
追寻的凡柔完成签到,获得积分20
6秒前
sky完成签到,获得积分10
6秒前
6秒前
成就的觅风完成签到,获得积分10
6秒前
希望天下0贩的0应助HOAN采纳,获得50
7秒前
饺子完成签到,获得积分10
7秒前
7秒前
hhh完成签到,获得积分10
8秒前
One完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645554
求助须知:如何正确求助?哪些是违规求助? 4769221
关于积分的说明 15030506
捐赠科研通 4804229
什么是DOI,文献DOI怎么找? 2568855
邀请新用户注册赠送积分活动 1526056
关于科研通互助平台的介绍 1485654