A method for organs classification and fruit counting on pomegranate trees based on multi-features fusion and support vector machine by 3D point cloud

人工智能 模式识别(心理学) 支持向量机 聚类分析 RGB颜色模型 点云 数据库扫描 数学 分类器(UML) 平滑的 计算机科学 层次聚类 计算机视觉 模糊聚类 树冠聚类算法
作者
Chunlong Zhang,Kaifei Zhang,Luzhen Ge,Kunlin Zou,Song Wang,Junxiong Zhang,Wei Li
出处
期刊:Scientia Horticulturae [Elsevier]
卷期号:278: 109791-109791 被引量:27
标识
DOI:10.1016/j.scienta.2020.109791
摘要

Organs classification and fruit counting on pomegranate trees are of great significance for horticulture works and robotic picking. However, there are still some challenges: (1) illumination is uncontrollable in the natural environment; (2) traditional 2D image-based methods for classification and recognition are limited by occlusion on pomegranate trees. In this paper, a method for organs classification and fruit counting on pomegranate trees based on multi-features fusion and Support Vector Machine (SVM) was proposed. It was constructed by the following steps: (1) Three-dimensional point clouds of pomegranate trees were obtained by an RGB-D camera; (2) Three-dimensional point clouds were preprocessed; (3) Color and shape features were extracted to train the SVM classifier; (4) The obtained classifier model was used for organs classification on pomegranate trees; (5) A K-nearest neighbor (KNN) smoothing based on weighted Euclidean distance was used to improve the accuracy of classification; (6) An agglomerative-divisive hierarchical clustering was used to count pomegranate fruit. The experiment results showed that the SVM classifier based on color and shape feature had an accuracy of 0.75 for fruit and 0.99 for non-fruit. The fruit counting based on agglomerative-divisive hierarchical clustering had a recall of 87.74 % and a precision of 78.15 %. Compared with density-based spatial clustering of applications with noise (DBSCAN), the recall has improved significantly. This method was aimed at the whole fruit tree, so it has advantages in the completeness of information. The results indicated that the proposed method was effective and feasible for organs classification and yield estimation on pomegranate trees in the natural environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hu970发布了新的文献求助30
刚刚
1秒前
腼腆的安雁完成签到 ,获得积分20
1秒前
中大王发布了新的文献求助10
1秒前
欢呼鼠标完成签到,获得积分20
2秒前
kk完成签到 ,获得积分10
2秒前
jxcandice完成签到,获得积分10
2秒前
悟空完成签到,获得积分10
2秒前
YY完成签到,获得积分10
3秒前
让大佐眯会吧完成签到,获得积分20
3秒前
Akim应助菊菊采纳,获得10
3秒前
3秒前
刘星星发布了新的文献求助10
3秒前
Vii完成签到,获得积分10
4秒前
4秒前
4秒前
星辰大海应助yatou5651采纳,获得10
5秒前
夜空中最亮的星完成签到,获得积分10
5秒前
咯咯咯发布了新的文献求助20
6秒前
a1oft发布了新的文献求助10
6秒前
地狱跳跳虎完成签到,获得积分10
7秒前
7秒前
7秒前
朱一龙发布了新的文献求助30
8秒前
中大王完成签到,获得积分10
8秒前
8秒前
啦啦啦完成签到 ,获得积分10
8秒前
艺阳完成签到,获得积分10
9秒前
9秒前
俏皮大地完成签到 ,获得积分10
9秒前
LLL发布了新的文献求助10
9秒前
共享精神应助卡卡采纳,获得10
10秒前
10秒前
10秒前
10秒前
大菠萝发布了新的文献求助10
10秒前
HEIKU应助帅酷的小刺猬采纳,获得10
11秒前
深情的嘉熙完成签到,获得积分10
11秒前
顺利涵菡完成签到,获得积分20
11秒前
斯文败类应助Jack采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762