A method for organs classification and fruit counting on pomegranate trees based on multi-features fusion and support vector machine by 3D point cloud

人工智能 模式识别(心理学) 支持向量机 聚类分析 RGB颜色模型 点云 数据库扫描 数学 分类器(UML) 平滑的 计算机科学 层次聚类 计算机视觉 模糊聚类 树冠聚类算法
作者
Chunlong Zhang,Kaifei Zhang,Luzhen Ge,Kunlin Zou,Song Wang,Junxiong Zhang,Wei Li
出处
期刊:Scientia Horticulturae [Elsevier BV]
卷期号:278: 109791-109791 被引量:27
标识
DOI:10.1016/j.scienta.2020.109791
摘要

Organs classification and fruit counting on pomegranate trees are of great significance for horticulture works and robotic picking. However, there are still some challenges: (1) illumination is uncontrollable in the natural environment; (2) traditional 2D image-based methods for classification and recognition are limited by occlusion on pomegranate trees. In this paper, a method for organs classification and fruit counting on pomegranate trees based on multi-features fusion and Support Vector Machine (SVM) was proposed. It was constructed by the following steps: (1) Three-dimensional point clouds of pomegranate trees were obtained by an RGB-D camera; (2) Three-dimensional point clouds were preprocessed; (3) Color and shape features were extracted to train the SVM classifier; (4) The obtained classifier model was used for organs classification on pomegranate trees; (5) A K-nearest neighbor (KNN) smoothing based on weighted Euclidean distance was used to improve the accuracy of classification; (6) An agglomerative-divisive hierarchical clustering was used to count pomegranate fruit. The experiment results showed that the SVM classifier based on color and shape feature had an accuracy of 0.75 for fruit and 0.99 for non-fruit. The fruit counting based on agglomerative-divisive hierarchical clustering had a recall of 87.74 % and a precision of 78.15 %. Compared with density-based spatial clustering of applications with noise (DBSCAN), the recall has improved significantly. This method was aimed at the whole fruit tree, so it has advantages in the completeness of information. The results indicated that the proposed method was effective and feasible for organs classification and yield estimation on pomegranate trees in the natural environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
第十二夜关注了科研通微信公众号
刚刚
刚刚
刚刚
桐桐应助要吃烧饼么采纳,获得10
1秒前
镜花水月发布了新的文献求助10
2秒前
tender发布了新的文献求助10
2秒前
2秒前
3秒前
无私追命发布了新的文献求助10
3秒前
即将拥有腹肌的小王完成签到,获得积分10
3秒前
3秒前
Ava应助一团采纳,获得10
3秒前
smottom应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
曲奇饼干完成签到,获得积分10
4秒前
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
田様应助guard采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
5秒前
大个应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
5秒前
tttt发布了新的文献求助10
5秒前
Shion完成签到,获得积分10
6秒前
刻苦沛容完成签到,获得积分10
6秒前
天天快乐应助重要的冰凡采纳,获得10
7秒前
慕青应助cometx采纳,获得10
7秒前
小奶发布了新的文献求助10
7秒前
Hello应助azure采纳,获得10
7秒前
涂惠芳完成签到,获得积分10
8秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974463
求助须知:如何正确求助?哪些是违规求助? 3518823
关于积分的说明 11196212
捐赠科研通 3255008
什么是DOI,文献DOI怎么找? 1797655
邀请新用户注册赠送积分活动 877052
科研通“疑难数据库(出版商)”最低求助积分说明 806130