A method for organs classification and fruit counting on pomegranate trees based on multi-features fusion and support vector machine by 3D point cloud

人工智能 模式识别(心理学) 支持向量机 聚类分析 RGB颜色模型 点云 数据库扫描 数学 分类器(UML) 平滑的 计算机科学 层次聚类 计算机视觉 模糊聚类 树冠聚类算法
作者
Chunlong Zhang,Kaifei Zhang,Luzhen Ge,Kunlin Zou,Song Wang,Junxiong Zhang,Wei Li
出处
期刊:Scientia Horticulturae [Elsevier]
卷期号:278: 109791-109791 被引量:27
标识
DOI:10.1016/j.scienta.2020.109791
摘要

Organs classification and fruit counting on pomegranate trees are of great significance for horticulture works and robotic picking. However, there are still some challenges: (1) illumination is uncontrollable in the natural environment; (2) traditional 2D image-based methods for classification and recognition are limited by occlusion on pomegranate trees. In this paper, a method for organs classification and fruit counting on pomegranate trees based on multi-features fusion and Support Vector Machine (SVM) was proposed. It was constructed by the following steps: (1) Three-dimensional point clouds of pomegranate trees were obtained by an RGB-D camera; (2) Three-dimensional point clouds were preprocessed; (3) Color and shape features were extracted to train the SVM classifier; (4) The obtained classifier model was used for organs classification on pomegranate trees; (5) A K-nearest neighbor (KNN) smoothing based on weighted Euclidean distance was used to improve the accuracy of classification; (6) An agglomerative-divisive hierarchical clustering was used to count pomegranate fruit. The experiment results showed that the SVM classifier based on color and shape feature had an accuracy of 0.75 for fruit and 0.99 for non-fruit. The fruit counting based on agglomerative-divisive hierarchical clustering had a recall of 87.74 % and a precision of 78.15 %. Compared with density-based spatial clustering of applications with noise (DBSCAN), the recall has improved significantly. This method was aimed at the whole fruit tree, so it has advantages in the completeness of information. The results indicated that the proposed method was effective and feasible for organs classification and yield estimation on pomegranate trees in the natural environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激动的项链完成签到,获得积分10
刚刚
刚刚
LuckyM发布了新的文献求助10
1秒前
1秒前
干净的冷安完成签到,获得积分10
2秒前
lynn221204发布了新的文献求助10
2秒前
2秒前
3秒前
5秒前
5秒前
6秒前
科研通AI6应助wait采纳,获得10
6秒前
呱呱完成签到 ,获得积分10
6秒前
eno1009发布了新的文献求助20
7秒前
如意蚂蚁完成签到,获得积分10
9秒前
9秒前
乘风破浪发布了新的文献求助10
10秒前
CHUANSHUIRUYUN完成签到,获得积分10
10秒前
12秒前
凯少完成签到 ,获得积分10
12秒前
zuo完成签到,获得积分10
13秒前
完美世界应助DXL采纳,获得10
14秒前
15秒前
dzdzzzzzzzzzz发布了新的文献求助10
16秒前
Stella应助隐形的凡阳采纳,获得10
17秒前
浮游应助科研大王采纳,获得10
17秒前
维奈克拉应助粒粒采纳,获得20
17秒前
18秒前
19秒前
拉长的紫安完成签到,获得积分10
19秒前
cfyoung完成签到,获得积分10
19秒前
GuangqinMa发布了新的文献求助10
20秒前
21秒前
niNe3YUE应助会化蝶采纳,获得10
21秒前
橙子雨发布了新的文献求助10
23秒前
25秒前
25秒前
科研通AI6应助冷酷严青采纳,获得10
25秒前
25秒前
dzdzzzzzzzzzz完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642578
关于积分的说明 14668531
捐赠科研通 4583986
什么是DOI,文献DOI怎么找? 2514487
邀请新用户注册赠送积分活动 1488830
关于科研通互助平台的介绍 1459454