A method for organs classification and fruit counting on pomegranate trees based on multi-features fusion and support vector machine by 3D point cloud

人工智能 模式识别(心理学) 支持向量机 聚类分析 RGB颜色模型 点云 数据库扫描 数学 分类器(UML) 平滑的 计算机科学 层次聚类 计算机视觉 模糊聚类 树冠聚类算法
作者
Chunlong Zhang,Kaifei Zhang,Luzhen Ge,Kunlin Zou,Song Wang,Junxiong Zhang,Wei Li
出处
期刊:Scientia Horticulturae [Elsevier]
卷期号:278: 109791-109791 被引量:25
标识
DOI:10.1016/j.scienta.2020.109791
摘要

Organs classification and fruit counting on pomegranate trees are of great significance for horticulture works and robotic picking. However, there are still some challenges: (1) illumination is uncontrollable in the natural environment; (2) traditional 2D image-based methods for classification and recognition are limited by occlusion on pomegranate trees. In this paper, a method for organs classification and fruit counting on pomegranate trees based on multi-features fusion and Support Vector Machine (SVM) was proposed. It was constructed by the following steps: (1) Three-dimensional point clouds of pomegranate trees were obtained by an RGB-D camera; (2) Three-dimensional point clouds were preprocessed; (3) Color and shape features were extracted to train the SVM classifier; (4) The obtained classifier model was used for organs classification on pomegranate trees; (5) A K-nearest neighbor (KNN) smoothing based on weighted Euclidean distance was used to improve the accuracy of classification; (6) An agglomerative-divisive hierarchical clustering was used to count pomegranate fruit. The experiment results showed that the SVM classifier based on color and shape feature had an accuracy of 0.75 for fruit and 0.99 for non-fruit. The fruit counting based on agglomerative-divisive hierarchical clustering had a recall of 87.74 % and a precision of 78.15 %. Compared with density-based spatial clustering of applications with noise (DBSCAN), the recall has improved significantly. This method was aimed at the whole fruit tree, so it has advantages in the completeness of information. The results indicated that the proposed method was effective and feasible for organs classification and yield estimation on pomegranate trees in the natural environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
脑洞疼应助易姜采纳,获得20
1秒前
东阳完成签到,获得积分10
1秒前
丫丫完成签到 ,获得积分10
2秒前
3秒前
xyy102完成签到,获得积分10
4秒前
lily88发布了新的文献求助10
7秒前
啵啵完成签到,获得积分10
7秒前
诚心阁发布了新的文献求助10
7秒前
L_x完成签到 ,获得积分10
7秒前
7秒前
焦恩俊完成签到,获得积分20
11秒前
Shabby0-0发布了新的文献求助10
11秒前
12秒前
纯粹完成签到,获得积分10
13秒前
十月的天空完成签到,获得积分10
14秒前
14秒前
代纤绮完成签到,获得积分10
15秒前
Elary完成签到,获得积分20
15秒前
谷鸿飞完成签到,获得积分10
15秒前
纯粹发布了新的文献求助10
16秒前
现代绮玉完成签到,获得积分10
16秒前
小丸子完成签到,获得积分10
16秒前
19秒前
小巧的远望完成签到,获得积分10
19秒前
两天浇一次水完成签到,获得积分10
20秒前
22秒前
Ihang完成签到 ,获得积分10
22秒前
Shabby0-0完成签到,获得积分10
24秒前
hs发布了新的文献求助10
28秒前
Valky完成签到,获得积分10
29秒前
火火火小朋友完成签到 ,获得积分10
30秒前
宇文数学完成签到 ,获得积分10
31秒前
易槐完成签到,获得积分10
34秒前
搜集达人应助纯粹采纳,获得10
35秒前
乐懿发布了新的文献求助10
36秒前
Clarence完成签到,获得积分10
36秒前
36秒前
jerry驳回了Akim应助
37秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139849
求助须知:如何正确求助?哪些是违规求助? 2790719
关于积分的说明 7796422
捐赠科研通 2447131
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185