A method for organs classification and fruit counting on pomegranate trees based on multi-features fusion and support vector machine by 3D point cloud

人工智能 模式识别(心理学) 支持向量机 聚类分析 RGB颜色模型 点云 数据库扫描 数学 分类器(UML) 平滑的 计算机科学 层次聚类 计算机视觉 模糊聚类 树冠聚类算法
作者
Chunlong Zhang,Kaifei Zhang,Luzhen Ge,Kunlin Zou,Song Wang,Junxiong Zhang,Wei Li
出处
期刊:Scientia Horticulturae [Elsevier BV]
卷期号:278: 109791-109791 被引量:27
标识
DOI:10.1016/j.scienta.2020.109791
摘要

Organs classification and fruit counting on pomegranate trees are of great significance for horticulture works and robotic picking. However, there are still some challenges: (1) illumination is uncontrollable in the natural environment; (2) traditional 2D image-based methods for classification and recognition are limited by occlusion on pomegranate trees. In this paper, a method for organs classification and fruit counting on pomegranate trees based on multi-features fusion and Support Vector Machine (SVM) was proposed. It was constructed by the following steps: (1) Three-dimensional point clouds of pomegranate trees were obtained by an RGB-D camera; (2) Three-dimensional point clouds were preprocessed; (3) Color and shape features were extracted to train the SVM classifier; (4) The obtained classifier model was used for organs classification on pomegranate trees; (5) A K-nearest neighbor (KNN) smoothing based on weighted Euclidean distance was used to improve the accuracy of classification; (6) An agglomerative-divisive hierarchical clustering was used to count pomegranate fruit. The experiment results showed that the SVM classifier based on color and shape feature had an accuracy of 0.75 for fruit and 0.99 for non-fruit. The fruit counting based on agglomerative-divisive hierarchical clustering had a recall of 87.74 % and a precision of 78.15 %. Compared with density-based spatial clustering of applications with noise (DBSCAN), the recall has improved significantly. This method was aimed at the whole fruit tree, so it has advantages in the completeness of information. The results indicated that the proposed method was effective and feasible for organs classification and yield estimation on pomegranate trees in the natural environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曙光森林完成签到,获得积分10
1秒前
Silence完成签到 ,获得积分10
4秒前
陈M雯完成签到 ,获得积分10
7秒前
loga80完成签到,获得积分0
9秒前
逢场作戱__完成签到 ,获得积分10
11秒前
特别圆的正方形完成签到 ,获得积分10
11秒前
xy完成签到 ,获得积分10
12秒前
赫连人杰完成签到,获得积分10
13秒前
LLL完成签到 ,获得积分10
14秒前
神勇的天问完成签到 ,获得积分10
15秒前
阿狸完成签到 ,获得积分0
17秒前
CJW完成签到 ,获得积分10
27秒前
依依完成签到 ,获得积分10
31秒前
青树柠檬完成签到 ,获得积分10
31秒前
bbsheng完成签到,获得积分10
32秒前
Ayn完成签到 ,获得积分10
32秒前
SciGPT应助科研通管家采纳,获得10
38秒前
周全完成签到 ,获得积分10
40秒前
大帅比完成签到 ,获得积分10
43秒前
xiaozou55完成签到 ,获得积分10
49秒前
魔幻友菱完成签到 ,获得积分10
55秒前
背书强完成签到 ,获得积分10
58秒前
nianshu完成签到 ,获得积分10
1分钟前
左丘映易完成签到,获得积分0
1分钟前
酷波er应助单薄念波采纳,获得10
1分钟前
迅速的念芹完成签到 ,获得积分10
1分钟前
Liziqi823完成签到,获得积分10
1分钟前
liuyq0501完成签到,获得积分0
1分钟前
zhang完成签到 ,获得积分10
1分钟前
xybjt完成签到 ,获得积分10
1分钟前
glomming完成签到 ,获得积分10
1分钟前
Bryan应助LMFY采纳,获得10
1分钟前
zhaoxiaonuan完成签到,获得积分10
1分钟前
dream完成签到 ,获得积分10
1分钟前
落寞剑成完成签到 ,获得积分10
1分钟前
故意的怜晴完成签到 ,获得积分10
1分钟前
是小小李哇完成签到 ,获得积分10
1分钟前
YangMengting完成签到 ,获得积分10
1分钟前
帅气天荷完成签到 ,获得积分10
1分钟前
潘fujun完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167368
捐赠科研通 3248732
什么是DOI,文献DOI怎么找? 1794465
邀请新用户注册赠送积分活动 875065
科研通“疑难数据库(出版商)”最低求助积分说明 804664