Optimal extraction of echelle spectra: Getting the most out of observations

探测器 计算机科学 算法 分光计 离群值 光学 曲率 倾斜(摄像机) 物理 人工智能 数学 几何学
作者
N. Piskunov,Ansgar Wehrhahn,Thomas Marquart
出处
期刊:Astronomy and Astrophysics [EDP Sciences]
卷期号:646: A32-A32 被引量:11
标识
DOI:10.1051/0004-6361/202038293
摘要

The price of instruments and observing time on modern telescopes is quickly increasing with the size of the primary mirror. Therefore, it is worth revisiting the data reduction algorithms to extract every bit of scientific information from observations. Echelle spectrographs are typical instruments in high-resolution spectroscopy, but attempts to improve the wavelength coverage and versatility of these instruments results in a complicated and variable footprint of the entrance slit projection onto the science detector. Traditional spectral extraction methods fail to perform a truly optimal extraction, when the slit image is not aligned with the detector columns but instead is tilted or even curved. We here present the mathematical algorithms and examples of their application to the optimal extraction and the following reduction steps for echelle spectrometers equipped with an entrance slit, that is imaged with various distortions, such as variable tilt and curvature. The new method minimizes the loss of spectral resolution, maximizes the signal-to-noise ratio, and efficiently identifies local outliers. In addition to the new optimal extraction we present order splicing and a more robust continuum normalization algorithms. We have developed and implemented new algorithms that create a continuum-normalized spectrum. In the process we account for the (variable) tilt/curvature of the slit image on the detector and achieve optimal extraction without prior assumptions about the slit illumination. Thus the new method can handle arbitrary image slicers, slit scanning, and other observational techniques aimed at increasing the throughput or dynamic range. We compare our methods with other techniques for different instruments to illustrate superior performance of the new algorithms compared to commonly used procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智的lan完成签到 ,获得积分10
2秒前
nini完成签到,获得积分10
3秒前
mncvjs发布了新的文献求助10
7秒前
搜集达人应助哈哈采纳,获得30
7秒前
今年离开老登了完成签到,获得积分10
7秒前
6S6完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助150
8秒前
耍酷的冷雪完成签到,获得积分10
8秒前
怡然茗茗完成签到 ,获得积分10
8秒前
无聊的惜文完成签到 ,获得积分10
8秒前
Tina完成签到,获得积分10
13秒前
倾听阳光完成签到 ,获得积分10
13秒前
Double_N完成签到,获得积分10
15秒前
17秒前
fantexi113完成签到,获得积分0
17秒前
窦房结完成签到 ,获得积分10
17秒前
玩命的化蛹完成签到,获得积分10
18秒前
水硕完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助150
20秒前
xiaofeixia完成签到 ,获得积分10
21秒前
随便起个名完成签到,获得积分10
23秒前
HH完成签到,获得积分10
23秒前
chris完成签到,获得积分10
23秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得150
24秒前
FashionBoy应助科研通管家采纳,获得30
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得150
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
美丽人生完成签到 ,获得积分10
25秒前
雨后完成签到 ,获得积分10
27秒前
Augenstern完成签到,获得积分10
27秒前
溆玉碎兰笑完成签到 ,获得积分10
29秒前
李大胖胖完成签到 ,获得积分10
29秒前
Edou完成签到 ,获得积分10
29秒前
2275523154完成签到,获得积分10
30秒前
豆浆来点蒜泥完成签到,获得积分10
31秒前
简单完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助150
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093339
求助须知:如何正确求助?哪些是违规求助? 4306976
关于积分的说明 13417433
捐赠科研通 4133171
什么是DOI,文献DOI怎么找? 2264356
邀请新用户注册赠送积分活动 1268004
关于科研通互助平台的介绍 1203813