CNN-G: Convolutional Neural Network Combined With Graph for Image Segmentation With Theoretical Analysis

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 分割 图形 图像分割 深度学习 图论 特征提取 尺度空间分割 理论计算机科学 数学 组合数学
作者
Yi Lu,Yaran Chen,Dongbin Zhao,Bao Liu,Zhichao Lai,Mantang Chen
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:13 (3): 631-644 被引量:59
标识
DOI:10.1109/tcds.2020.2998497
摘要

Deep convolutional neural network (CNN), although recognized to be considerably successful in its application to semantic segmentation, is inadequate for extracting the overall structure information, for its representing images with the data in the Euclidean space. To improve this inadequacy, a new model in the graph domain that transforms semantic segmentation into graph node classification is proposed for semantic segmentation. In this model, the image is represented by a graph, with its nodes initialized by the feature map obtained by a CNN, and its edges reflecting the relationships of the nodes. The node relationships that are taken into consideration include distance-based ones and semantic ones, respectively, calculated with the Gauss kernel function and attention mechanism. The graph neural network is also introduced in this model for the classification of graph nodes, which can expand the receptive field without the loss of location information and combine the structure with the feature extraction. Most importantly, it is theoretically concluded that the proposed graph model takes the same role as a Laplace regularization term in image segmentation, which has been proven by multiple comparative experiments that show the effectiveness of the model in image semantic segmentation. The learned attention is visualized by the heatmap to validate the structure learning ability of our model. The results of these experiments show the importance of structural information in image segmentation. Hence, an idea of deep learning combined with graph structural information is provided in theory and method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll发布了新的文献求助10
刚刚
晓雯发布了新的文献求助10
刚刚
刚刚
flipped完成签到 ,获得积分10
1秒前
nihaoxiaoai完成签到,获得积分10
1秒前
科研通AI5应助DE2022采纳,获得10
2秒前
JFP发布了新的文献求助10
3秒前
Michaelialzm完成签到,获得积分10
4秒前
天秀之合发布了新的文献求助30
5秒前
WWXWWX发布了新的文献求助10
5秒前
6秒前
飞飞发布了新的文献求助10
6秒前
cocolu应助kmmu0611采纳,获得20
8秒前
10秒前
Vvvnnnaa1完成签到,获得积分10
10秒前
Ricewind完成签到,获得积分20
10秒前
yuanzheng发布了新的文献求助10
12秒前
健忘的坤发布了新的文献求助10
12秒前
斯文败类应助luyang采纳,获得10
12秒前
13秒前
学无止境完成签到,获得积分10
14秒前
15秒前
15秒前
学无止境发布了新的文献求助10
16秒前
4xi发布了新的文献求助10
19秒前
科研通AI5应助穿堂风采纳,获得10
19秒前
小碗完成签到,获得积分10
19秒前
MaFY完成签到,获得积分10
20秒前
Sophiaple发布了新的文献求助10
21秒前
充电宝应助伏坎采纳,获得10
23秒前
积极马里奥完成签到 ,获得积分10
26秒前
guozizi发布了新的文献求助10
27秒前
CodeCraft应助yuanzheng采纳,获得10
30秒前
33秒前
34秒前
www发布了新的文献求助10
34秒前
35秒前
直率小蚂蚁完成签到,获得积分10
35秒前
36秒前
伏坎发布了新的文献求助10
38秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491062
求助须知:如何正确求助?哪些是违规求助? 3077779
关于积分的说明 9150152
捐赠科研通 2770160
什么是DOI,文献DOI怎么找? 1520088
邀请新用户注册赠送积分活动 704504
科研通“疑难数据库(出版商)”最低求助积分说明 702196