Li2O Solid Electrolyte Interphase: Probing Transport Properties at the Chemical Potential of Lithium

电解质 电化学 锂(药物) 阳极 介电谱 材料科学 化学工程 离子电导率 锂电池 快离子导体 相间 表征(材料科学) 离子键合 化学 电极 纳米技术 物理化学 离子 有机化学 工程类 内分泌学 生物 医学 遗传学
作者
Rui Guo,Betar M. Gallant
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:32 (13): 5525-5533 被引量:193
标识
DOI:10.1021/acs.chemmater.0c00333
摘要

Copyright © 2020 American Chemical Society. Lithium (Li) anodes suffer from numerous challenges arising from the chemically inhomogeneous nature of the native solid electrolyte interphase (SEI), which impedes smooth plating and leads to dendrite growth. In spite of much attention given of late to engineering Li interfaces, there is still limited understanding of the desired chemical composition of an improved Li SEI. One major challenge has been the lack of empirical data on the structure-property-performance relations in individual SEI phases, specifically those present at the metallic Li interface, where the chemical potential imposed by Li will yield different material properties than the bulk analogues typically invoked to understand the SEI behavior. Herein, we report the preparation of single-component SEIs of lithium oxide (Li2O) grown ex situ on Li foils by controlled metal-gas reactions, generating "deconstructed"model interfaces with a nanoscale thickness (20-100 nm) similar to the native, yet more complex multiphasic SEI. The model Li|Li2O electrodes serve as a platform for further chemical and electrochemical characterization. In particular, electrochemical impedance spectroscopy, combined with interface modeling, is used to extract transport properties (ionic conductivity, diffusivity, charge carrier concentration, and activation energy barriers) of Li|Li2O in symmetric cells with EC/DEC electrolytes. The Li2O SEI is further studied as a function of a synthesis condition, revealing microstructural sensitivities that can be tuned to modulate transport behaviors. Finally, results are compared with single-phase Li|LiF interfaces synthesized herein and with the native SEI to isolate chemistry- A nd structure-specific differences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研的人发布了新的文献求助10
刚刚
遍地捡糖不要钱完成签到 ,获得积分10
刚刚
发文章12138完成签到,获得积分10
1秒前
qiuziyun发布了新的文献求助10
1秒前
luluyang发布了新的文献求助20
4秒前
4秒前
蕲艾比比谁完成签到,获得积分10
4秒前
负责红酒完成签到,获得积分10
5秒前
5秒前
daytoy完成签到,获得积分10
5秒前
6秒前
伞下铭发布了新的文献求助10
6秒前
6秒前
材料小白完成签到,获得积分10
7秒前
jwb711发布了新的文献求助30
7秒前
JayceHe应助小雨采纳,获得10
7秒前
8秒前
zhj发布了新的文献求助10
9秒前
现代的绿真完成签到,获得积分10
9秒前
9秒前
lgao驳回了Orange应助
10秒前
有魅力的含海完成签到,获得积分10
10秒前
10秒前
Li完成签到,获得积分10
10秒前
Jasper应助daytoy采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
负责红酒发布了新的文献求助10
12秒前
Yu发布了新的文献求助10
12秒前
辛勤寻琴完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
小马甲应助热心的易烟采纳,获得10
14秒前
15秒前
15秒前
15秒前
zhj完成签到,获得积分10
16秒前
希望天下0贩的0应助liekkas采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006