Use of artificial intelligence for detection of gastric lesions by magnetically controlled capsule endoscopy

医学 胶囊内镜 接收机工作特性 放射科 卷积神经网络 病变 置信区间 内窥镜检查 胃肠病学 人工智能 内科学 病理 计算机科学
作者
Jì Xià,Tian Xia,Jun Pan,Fei Gao,Shuang Wang,Yang‐Yang Qian,Heng Wang,Jie Zhao,Xi Jiang,Wen‐Bin Zou,Yuan‐Chen Wang,Wei Zhou,Zhao‐Shen Li,Zhuan Liao
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:93 (1): 133-139.e4 被引量:48
标识
DOI:10.1016/j.gie.2020.05.027
摘要

Background and Aims Magnetically controlled capsule endoscopy (MCE) has become an efficient diagnostic modality for gastric diseases. We developed a novel automatic gastric lesion detection system to assist in diagnosis and reduce inter-physician variations. This study aimed to evaluate the diagnostic capability of the computer-aided detection system for MCE images. Methods We developed a novel automatic gastric lesion detection system based on a convolutional neural network (CNN) and faster region-based convolutional neural network (RCNN). A total of 1,023,955 MCE images from 797 patients were used to train and test the system. These images were divided into 7 categories (erosion, polyp, ulcer, submucosal tumor, xanthoma, normal mucosa, and invalid images). The primary endpoint was the sensitivity of the system. Results The system detected gastric focal lesions with 96.2% sensitivity (95% confidence interval [CI], 95.7%-96.5%), 76.2% specificity (95% CI, 75.97%-76.3%), 16.0% positive predictive value (95% CI, 15.7%-16.3%), 99.7% negative predictive value (95% CI, 99.74%-99.79%), and 77.1% accuracy (95% CI, 76.9%-77.3%) (sensitivity was 99.3% for erosions; 96.5% for polyps; 89.3% for ulcers; 87.2% for submucosal tumors; 90.6% for xanthomas; 67.8% for normal; and 96.1% for invalid images). Analysis of the receiver operating characteristic curve showed that the area under the curve for all positive images was 0.84. Image processing time was 44 milliseconds per image for the system and 0.38 ± 0.29 seconds per image for clinicians (P < .001). The kappa value of 2 times repeated reads was 1. Conclusions The CNN faster-RCNN-based diagnostic program system showed good performance in diagnosing gastric focal lesions in MCE images. Magnetically controlled capsule endoscopy (MCE) has become an efficient diagnostic modality for gastric diseases. We developed a novel automatic gastric lesion detection system to assist in diagnosis and reduce inter-physician variations. This study aimed to evaluate the diagnostic capability of the computer-aided detection system for MCE images. We developed a novel automatic gastric lesion detection system based on a convolutional neural network (CNN) and faster region-based convolutional neural network (RCNN). A total of 1,023,955 MCE images from 797 patients were used to train and test the system. These images were divided into 7 categories (erosion, polyp, ulcer, submucosal tumor, xanthoma, normal mucosa, and invalid images). The primary endpoint was the sensitivity of the system. The system detected gastric focal lesions with 96.2% sensitivity (95% confidence interval [CI], 95.7%-96.5%), 76.2% specificity (95% CI, 75.97%-76.3%), 16.0% positive predictive value (95% CI, 15.7%-16.3%), 99.7% negative predictive value (95% CI, 99.74%-99.79%), and 77.1% accuracy (95% CI, 76.9%-77.3%) (sensitivity was 99.3% for erosions; 96.5% for polyps; 89.3% for ulcers; 87.2% for submucosal tumors; 90.6% for xanthomas; 67.8% for normal; and 96.1% for invalid images). Analysis of the receiver operating characteristic curve showed that the area under the curve for all positive images was 0.84. Image processing time was 44 milliseconds per image for the system and 0.38 ± 0.29 seconds per image for clinicians (P < .001). The kappa value of 2 times repeated reads was 1. The CNN faster-RCNN-based diagnostic program system showed good performance in diagnosing gastric focal lesions in MCE images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HMR完成签到 ,获得积分10
刚刚
李\J完成签到,获得积分10
刚刚
1秒前
可靠连虎发布了新的文献求助10
2秒前
小王完成签到,获得积分20
4秒前
科研互通完成签到,获得积分10
4秒前
DWD完成签到,获得积分10
5秒前
孟小宝完成签到,获得积分10
5秒前
aki空中飞跃完成签到,获得积分10
7秒前
Pengzhuhuai完成签到,获得积分10
7秒前
钦川发布了新的文献求助10
8秒前
问枫发布了新的文献求助10
9秒前
传奇3应助axiao采纳,获得10
9秒前
喜悦香薇完成签到 ,获得积分10
10秒前
甜美念珍完成签到 ,获得积分10
10秒前
江十三完成签到,获得积分10
12秒前
12秒前
天真书竹发布了新的文献求助10
12秒前
wsr完成签到,获得积分10
13秒前
17秒前
lng98完成签到,获得积分10
17秒前
张旭发布了新的文献求助30
18秒前
yuanll完成签到,获得积分10
18秒前
天真书竹完成签到,获得积分10
20秒前
问枫完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
pluto应助威武的夏彤采纳,获得20
22秒前
axiao完成签到,获得积分10
22秒前
知性的钢笔完成签到,获得积分10
23秒前
axiao发布了新的文献求助10
26秒前
华子黄发布了新的文献求助10
27秒前
小熊维尼完成签到,获得积分10
27秒前
zcj完成签到,获得积分10
27秒前
几号大家好完成签到,获得积分10
30秒前
32秒前
有魅力的安蕾完成签到 ,获得积分10
34秒前
上官若男应助小风吹着采纳,获得10
35秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774527
求助须知:如何正确求助?哪些是违规求助? 3320249
关于积分的说明 10199220
捐赠科研通 3034929
什么是DOI,文献DOI怎么找? 1665282
邀请新用户注册赠送积分活动 796771
科研通“疑难数据库(出版商)”最低求助积分说明 757570