亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning for Ultrasound Localization Microscopy

显微镜 人工智能 计算机科学 超声波 超声成像 计算机视觉 物理 光学 放射科 医学
作者
Xin Liu,Tianyang Zhou,Mengyang Lu,Yi Yang,Qiong He,Jianwen Luo
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (10): 3064-3078 被引量:91
标识
DOI:10.1109/tmi.2020.2986781
摘要

By localizing microbubbles (MBs) in the vasculature, ultrasound localization microscopy (ULM) has recently been proposed, which greatly improves the spatial resolution of ultrasound (US) imaging and will be helpful for clinical diagnosis. Nevertheless, several challenges remain in fast ULM imaging. The main problems are that current localization methods used to implement fast ULM imaging, e.g., a previously reported localization method based on sparse recovery (CS-ULM), suffer from long data-processing time and exhaustive parameter tuning (optimization). To address these problems, in this paper, we propose a ULM method based on deep learning, which is achieved by using a modified sub-pixel convolutional neural network (CNN), termed as mSPCN-ULM. Simulations and in vivo experiments are performed to evaluate the performance of mSPCN-ULM. Simulation results show that even if under high-density condition (6.4 MBs/mm 2 ), a high localization precision (~28 μm in the lateral direction and ~24 μm in the axial direction) and a high localization reliability (Jaccard index of 0.66) can be obtained by mSPCN-ULM, compared to CS-ULM. The in vivo experimental results indicate that with plane wave scan at a transmit center frequency of 15.625 MHz, microvessels with diameters of ~17 μm can be detected and adjacent microvessels with a distance of ~42 μm can be separated. Furthermore, when using GPU acceleration, the data-processing time of mSPCN-ULM can be shortened to ~6 sec/frame in the simulations and ~23 sec/frame in the in vivo experiments, which is 3-4 orders of magnitude faster than CS-ULM. Finally, once the network is trained, mSPCN-ULM does not need parameter tuning to implement ULM. As a result, mSPCN-ULM opens the door to implement ULM with fast data-processing speed, high imaging accuracy, short data-acquisition time, and high flexibility (robustness to parameters) characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
34秒前
57秒前
1分钟前
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
锦鲤完成签到 ,获得积分10
2分钟前
3分钟前
Later完成签到,获得积分20
3分钟前
3分钟前
景泰蓝完成签到,获得积分10
4分钟前
景泰蓝发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
鱼块发布了新的文献求助10
5分钟前
FashionBoy应助科研通管家采纳,获得10
5分钟前
赘婿应助鱼块采纳,获得10
5分钟前
一禅完成签到 ,获得积分10
7分钟前
lanbing802完成签到,获得积分10
7分钟前
Jasper应助zjl123采纳,获得10
7分钟前
8分钟前
一杯六一完成签到,获得积分10
8分钟前
9分钟前
zjl123发布了新的文献求助10
10分钟前
gszy1975发布了新的文献求助10
10分钟前
qiuxuan100发布了新的文献求助10
10分钟前
11分钟前
12分钟前
小周完成签到 ,获得积分10
13分钟前
13分钟前
刘刘完成签到 ,获得积分10
14分钟前
kuoping完成签到,获得积分10
14分钟前
王力完成签到 ,获得积分10
14分钟前
StayGolDay完成签到,获得积分10
15分钟前
wanci应助科研通管家采纳,获得10
15分钟前
李健应助科研通管家采纳,获得30
15分钟前
15分钟前
maodeshu应助clement采纳,获得20
16分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303289
求助须知:如何正确求助?哪些是违规求助? 2937597
关于积分的说明 8482546
捐赠科研通 2611482
什么是DOI,文献DOI怎么找? 1425949
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005