LIT-PCBA: An Unbiased Data Set for Machine Learning and Virtual Screening

公共化学 虚拟筛选 假阳性悖论 计算机科学 集合(抽象数据类型) 相似性(几何) 机器学习 数据挖掘 人工智能 计算生物学 生物信息学 药物发现 生物 程序设计语言 图像(数学)
作者
Viet‐Khoa Tran‐Nguyen,Célien Jacquemard,Didier Rognan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (9): 4263-4273 被引量:166
标识
DOI:10.1021/acs.jcim.0c00155
摘要

Comparative evaluation of virtual screening methods requires a rigorous benchmarking procedure on diverse, realistic, and unbiased data sets. Recent investigations from numerous research groups unambiguously demonstrate that artificially constructed ligand sets classically used by the community (e.g., DUD, DUD-E, MUV) are unfortunately biased by both obvious and hidden chemical biases, therefore overestimating the true accuracy of virtual screening methods. We herewith present a novel data set (LIT-PCBA) specifically designed for virtual screening and machine learning. LIT-PCBA relies on 149 dose–response PubChem bioassays that were additionally processed to remove false positives and assay artifacts and keep active and inactive compounds within similar molecular property ranges. To ascertain that the data set is suited to both ligand-based and structure-based virtual screening, target sets were restricted to single protein targets for which at least one X-ray structure is available in complex with ligands of the same phenotype (e.g., inhibitor, inverse agonist) as that of the PubChem active compounds. Preliminary virtual screening on the 21 remaining target sets with state-of-the-art orthogonal methods (2D fingerprint similarity, 3D shape similarity, molecular docking) enabled us to select 15 target sets for which at least one of the three screening methods is able to enrich the top 1%-ranked compounds in true actives by at least a factor of 2. The corresponding ligand sets (training, validation) were finally unbiased by the recently described asymmetric validation embedding (AVE) procedure to afford the LIT-PCBA data set, consisting of 15 targets and 7844 confirmed active and 407,381 confirmed inactive compounds. The data set mimics experimental screening decks in terms of hit rate (ratio of active to inactive compounds) and potency distribution. It is available online at http://drugdesign.unistra.fr/LIT-PCBA for download and for benchmarking novel virtual screening methods, notably those relying on machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不吃鱼完成签到,获得积分10
刚刚
1秒前
dudu发布了新的文献求助10
1秒前
站活动发布了新的文献求助10
1秒前
小灰灰完成签到,获得积分10
1秒前
dongdongqiang完成签到,获得积分10
1秒前
36456657应助yujie采纳,获得10
2秒前
K珑完成签到,获得积分10
2秒前
Demi_Ming完成签到,获得积分10
2秒前
3秒前
木子完成签到,获得积分10
3秒前
小苹果汤完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
传奇3应助小火苗采纳,获得10
4秒前
今后应助一一采纳,获得10
5秒前
不见高山完成签到,获得积分10
5秒前
5秒前
伶俐惋清完成签到,获得积分10
6秒前
怕黑的无招完成签到,获得积分10
6秒前
6秒前
害怕的水之完成签到,获得积分10
7秒前
7秒前
8秒前
领导范儿应助Yang采纳,获得50
8秒前
Hommand_藏山完成签到,获得积分10
8秒前
cj819发布了新的文献求助20
8秒前
凝望那片海2020完成签到,获得积分10
8秒前
淡定的水彤完成签到,获得积分10
9秒前
9秒前
谨慎含雁嘎嘎完成签到,获得积分10
9秒前
Owen应助大胆萤采纳,获得10
9秒前
Green完成签到,获得积分10
10秒前
10秒前
聪明完成签到 ,获得积分10
10秒前
11秒前
星辰大海应助两臂阿童木采纳,获得10
11秒前
12秒前
Zurlliant完成签到,获得积分10
12秒前
JunHan完成签到,获得积分10
12秒前
CipherSage应助快乐仙知采纳,获得10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661438
求助须知:如何正确求助?哪些是违规求助? 3222458
关于积分的说明 9746040
捐赠科研通 2932102
什么是DOI,文献DOI怎么找? 1605461
邀请新用户注册赠送积分活动 757898
科研通“疑难数据库(出版商)”最低求助积分说明 734576