Proposed Artificial Bee Colony Algorithm as Feature Selector to Predict the Leadership Perception of Site Managers

特征选择 随机森林 人工智能 分类器(UML) 计算机科学 特征(语言学) 模式识别(心理学) k-最近邻算法 聚类分析 人工蜂群算法 数据挖掘 过程(计算) 优化算法 机器学习 数学 数学优化 哲学 操作系统 语言学
作者
Mümine Kaya Keleş,Ümit Kılıç,Abdullah Emre Keleş
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:64 (3): 408-417 被引量:9
标识
DOI:10.1093/comjnl/bxaa163
摘要

Abstract Datasets have relevant and irrelevant features whose evaluations are fundamental for classification or clustering processes. The effects of these relevant features make classification accuracy more accurate and stable. At this point, optimization methods are used for feature selection process. This process is a feature reduction process finding the most relevant feature subset without decrement of the accuracy rate obtained by original feature sets. Varied nature inspiration-based optimization algorithms have been proposed as feature selector. The density of data in construction projects and the inability of extracting these data cause various losses in field studies. In this respect, the behaviors of leaders are important in the selection and efficient use of these data. The objective of this study is implementing Artificial Bee Colony (ABC) algorithm as a feature selection method to predict the leadership perception of the construction employees. When Random Forest, Sequential Minimal Optimization and K-Nearest Neighborhood (KNN) are used as classifier, 84.1584% as highest accuracy result and 0.805 as highest F-Measure result were obtained by using KNN and Random Forest classifier with proposed ABC Algorithm as feature selector. The results show that a nature inspiration-based optimization algorithm like ABC algorithm as feature selector is satisfactory in prediction of the Construction Employee’s Leadership Perception.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
spc68应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得30
刚刚
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
刚刚
华仔应助糟糕的雁菱采纳,获得10
1秒前
李不理发布了新的文献求助10
2秒前
cxt完成签到,获得积分10
2秒前
3秒前
可爱的函函应助123采纳,获得10
3秒前
Tigua发布了新的文献求助10
3秒前
瑞汐没有咖啡完成签到,获得积分10
3秒前
3秒前
火星上的十三完成签到,获得积分10
3秒前
Lucas应助心灵美的大山采纳,获得10
4秒前
张鑫怡完成签到,获得积分10
4秒前
4秒前
xiaoao发布了新的文献求助10
4秒前
4秒前
椰子泡芙完成签到,获得积分10
4秒前
ZCYBEYOND完成签到,获得积分10
5秒前
雨眠发布了新的文献求助10
5秒前
5秒前
CodeCraft应助xixixi采纳,获得10
6秒前
fdk839375548发布了新的文献求助10
6秒前
7秒前
赘婿应助tooy采纳,获得10
7秒前
胡无敌发布了新的文献求助10
7秒前
1111111111应助归海向南采纳,获得10
8秒前
8秒前
陈嘟嘟发布了新的文献求助10
8秒前
LW_Yem发布了新的文献求助10
9秒前
午后狂睡完成签到,获得积分10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587509
求助须知:如何正确求助?哪些是违规求助? 4670670
关于积分的说明 14783758
捐赠科研通 4623041
什么是DOI,文献DOI怎么找? 2531297
邀请新用户注册赠送积分活动 1499973
关于科研通互助平台的介绍 1468080