Proposed Artificial Bee Colony Algorithm as Feature Selector to Predict the Leadership Perception of Site Managers

特征选择 随机森林 人工智能 分类器(UML) 计算机科学 特征(语言学) 模式识别(心理学) k-最近邻算法 聚类分析 人工蜂群算法 数据挖掘 过程(计算) 优化算法 机器学习 数学 数学优化 哲学 操作系统 语言学
作者
Mümine Kaya Keleş,Ümit Kılıç,Abdullah Emre Keleş
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:64 (3): 408-417 被引量:9
标识
DOI:10.1093/comjnl/bxaa163
摘要

Abstract Datasets have relevant and irrelevant features whose evaluations are fundamental for classification or clustering processes. The effects of these relevant features make classification accuracy more accurate and stable. At this point, optimization methods are used for feature selection process. This process is a feature reduction process finding the most relevant feature subset without decrement of the accuracy rate obtained by original feature sets. Varied nature inspiration-based optimization algorithms have been proposed as feature selector. The density of data in construction projects and the inability of extracting these data cause various losses in field studies. In this respect, the behaviors of leaders are important in the selection and efficient use of these data. The objective of this study is implementing Artificial Bee Colony (ABC) algorithm as a feature selection method to predict the leadership perception of the construction employees. When Random Forest, Sequential Minimal Optimization and K-Nearest Neighborhood (KNN) are used as classifier, 84.1584% as highest accuracy result and 0.805 as highest F-Measure result were obtained by using KNN and Random Forest classifier with proposed ABC Algorithm as feature selector. The results show that a nature inspiration-based optimization algorithm like ABC algorithm as feature selector is satisfactory in prediction of the Construction Employee’s Leadership Perception.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啤酒半斤发布了新的文献求助200
刚刚
2秒前
2秒前
bin发布了新的文献求助100
2秒前
鲤鱼依白完成签到 ,获得积分10
2秒前
领导范儿应助十四吉采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
任贱贱完成签到,获得积分20
5秒前
小马甲应助言木禾采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
简单喀秋莎完成签到,获得积分10
8秒前
8秒前
CodeCraft应助菠萝披萨采纳,获得10
8秒前
风趣绿竹完成签到,获得积分10
9秒前
傲娇的秋莲完成签到,获得积分20
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
小明发布了新的文献求助10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
天天快乐应助科研通管家采纳,获得30
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
无花果应助einspringen采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
yu发布了新的文献求助30
10秒前
10秒前
11秒前
Levan完成签到,获得积分10
11秒前
bamboo应助科研通管家采纳,获得20
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
求助人员应助科研通管家采纳,获得30
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
蜉蝣完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667