Graph Attention Auto-Encoders

计算机科学 图形 编码器 理论计算机科学 特征学习 人工智能 节点(物理) 无监督学习 水准点(测量) 模式识别(心理学) 结构工程 大地测量学 工程类 地理 操作系统
作者
Amin Salehi,Hasan Davulcu
标识
DOI:10.1109/ictai50040.2020.00154
摘要

Auto-encoders have emerged as a successful framework for unsupervised learning. However, conventional auto-encoders are incapable of utilizing explicit relations in structured data. To take advantage of relations in graph-structured data, several graph auto-encoders have recently been proposed, but they neglect to reconstruct either the graph structure or node attributes. In this paper, we present the graph attention auto-encoder (GATE), a neural network architecture for unsupervised representation learning on graph-structured data. Our architecture is able to reconstruct graph-structured inputs, including both node attributes and the graph structure, through stacked encoder/decoder layers equipped with self-attention mechanisms. In the encoder, by considering node attributes as initial node representations, each layer generates new representations of nodes by attending over their neighbors' representations. In the decoder, we attempt to reverse the encoding process to reconstruct node attributes. Moreover, node representations are regularized to reconstruct the graph structure. Our proposed architecture does not need to know the graph structure upfront, and thus it can be applied to inductive learning. Our experiments demonstrate competitive performance on several node classification benchmark datasets for transductive and inductive tasks, even exceeding the performance of supervised learning baselines in most cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助无期采纳,获得10
1秒前
高子懿发布了新的文献求助10
1秒前
1秒前
年年年年发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
3秒前
桐桐应助浅笑_随风采纳,获得10
3秒前
FashionBoy应助这小猪真帅采纳,获得10
3秒前
小涂同学发布了新的文献求助10
3秒前
诺克萨斯发布了新的文献求助10
3秒前
3秒前
霍师傅发布了新的文献求助10
4秒前
丁点发布了新的文献求助10
4秒前
konoraha发布了新的文献求助10
5秒前
香蕉觅云应助mookie采纳,获得10
5秒前
SciGPT应助mahuahua采纳,获得10
6秒前
6秒前
英俊的铭应助霍师傅采纳,获得10
7秒前
蜡笔小新发布了新的文献求助10
7秒前
Owen应助cy采纳,获得10
7秒前
8秒前
10秒前
10秒前
10秒前
10秒前
11秒前
严好香完成签到 ,获得积分10
11秒前
11秒前
12秒前
长度2到发布了新的文献求助10
13秒前
13秒前
hyman1218发布了新的文献求助50
13秒前
君子扑火完成签到,获得积分10
13秒前
淡定的勒完成签到,获得积分10
14秒前
14秒前
浅笑_随风发布了新的文献求助10
14秒前
yinzenglinnn发布了新的文献求助10
14秒前
14秒前
zhangguo发布了新的文献求助100
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515