电解质
材料科学
电极
离子
化学物理
锂(药物)
分析化学(期刊)
化学
物理化学
色谱法
医学
内分泌学
有机化学
作者
Longlong Wang,Ruicong Xie,Bingbing Chen,Xinrun Yu,Jun Ma,Chao Li,Zhiwei Hu,Xingwei Sun,Chengjun Xu,Shanmu Dong,Ting‐Shan Chan,Jun Luo,Guanglei Cui,Liquan Chen
标识
DOI:10.1038/s41467-020-19726-5
摘要
The space charge layer (SCL) is generally considered one of the origins of the sluggish interfacial lithium-ion transport in all-solid-state lithium-ion batteries (ASSLIBs). However, in-situ visualization of the SCL effect on the interfacial lithium-ion transport in sulfide-based ASSLIBs is still a great challenge. Here, we directly observe the electrode/electrolyte interface lithium-ion accumulation resulting from the SCL by investigating the net-charge-density distribution across the high-voltage LiCoO2/argyrodite Li6PS5Cl interface using the in-situ differential phase contrast scanning transmission electron microscopy (DPC-STEM) technique. Moreover, we further demonstrate a built-in electric field and chemical potential coupling strategy to reduce the SCL formation and boost lithium-ion transport across the electrode/electrolyte interface by the in-situ DPC-STEM technique and finite element method simulations. Our findings will strikingly advance the fundamental scientific understanding of the SCL mechanism in ASSLIBs and shed light on rational electrode/electrolyte interface design for high-rate performance ASSLIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI