Efficacy of endoscopic ultrasound with artificial intelligence for the diagnosis of gastrointestinal stromal tumors

主旨 内镜超声 医学 一致性 医学诊断 诊断准确性 间质瘤 放射科 间质细胞 内科学
作者
Yosuke Minoda,Eikichi Ihara,Keishi Komori,Hitoshi Ogino,Yoshihiro Otsuka,Takatoshi Chinen,Yasuo Tsuda,Koji Ando,Hidetaka Yamamoto,Yoshihiro Ogawa
出处
期刊:Journal of Gastroenterology [Springer Nature]
卷期号:55 (12): 1119-1126 被引量:48
标识
DOI:10.1007/s00535-020-01725-4
摘要

Although endoscopic ultrasound (EUS) is reported to be suitable for determining the layer from which subepithelial lesions (SELs) originate, it is difficult to distinguish gastrointestinal stromal tumor (GIST) from non-GIST using only EUS images. If artificial intelligence (AI) can be used for the diagnosis of SELs, it should provide several benefits, including objectivity, simplicity, and quickness. In this pilot study, we propose an AI diagnostic system for SELs and evaluate its efficacy.Thirty sets each of EUS images with SELs ≥ 20 mm or < 20 mm were prepared for diagnosis by an EUS diagnostic system with AI (EUS-AI) and three EUS experts. The EUS-AI and EUS experts diagnosed the SELs using solely the EUS images. The concordance rates of the EUS-AI and EUS experts' diagnoses were compared with the pathological findings of the SELs.The accuracy, sensitivity, and specificity for SELs < 20 mm were 86.3, 86.3, and 62.5%, respectively for the EUS-AI, and 73.3, 68.2, and 87.5%, respectively, for the EUS experts. In contrast, accuracy, sensitivity, and specificity for SELs ≥ 20 mm were 90.0, 91.7, and 83.3%, respectively, for the EUS-AI, and 53.3, 50.0, and 83.3%, respectively, for the EUS experts. The area under the curve for the diagnostic yield of the EUS-AI for SELs ≥ 20 mm (0.965) was significantly higher than that (0.684) of the EUS experts (P = 0.007).EUS-AI had a good diagnostic yield for SELs ≥ 20 mm. EUS-AI has potential as a good option for the diagnosis of SELs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Edward完成签到 ,获得积分10
刚刚
林卷卷完成签到,获得积分10
刚刚
1秒前
科研通AI2S应助sheryang采纳,获得10
3秒前
确幸完成签到,获得积分10
7秒前
lemon完成签到 ,获得积分10
10秒前
aaaa完成签到,获得积分10
10秒前
10秒前
孤独如曼完成签到 ,获得积分10
10秒前
11秒前
SciGPT应助kiki采纳,获得10
11秒前
知止完成签到,获得积分10
11秒前
领导范儿应助灵巧一笑采纳,获得10
12秒前
12秒前
13秒前
名字是乱码完成签到,获得积分20
13秒前
田様应助1234采纳,获得10
15秒前
汉堡包应助夜曦采纳,获得10
15秒前
15秒前
脑洞疼应助Yang采纳,获得10
16秒前
16秒前
17秒前
pluto应助asdadadad采纳,获得10
17秒前
一二完成签到,获得积分10
18秒前
y彤发布了新的文献求助10
18秒前
木子完成签到,获得积分10
18秒前
FashionBoy应助木光采纳,获得10
18秒前
立冬完成签到,获得积分10
19秒前
JingFanGao完成签到,获得积分10
19秒前
ri_290完成签到,获得积分10
19秒前
1459发布了新的文献求助10
20秒前
宣幻桃完成签到 ,获得积分10
20秒前
Ting完成签到 ,获得积分10
20秒前
Zhangll完成签到,获得积分10
21秒前
上官若男应助医路前行采纳,获得10
22秒前
FYJY完成签到,获得积分10
23秒前
lyy完成签到 ,获得积分10
23秒前
帅气的逍遥完成签到 ,获得积分10
23秒前
沙世平完成签到,获得积分10
23秒前
song完成签到 ,获得积分10
23秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265802
求助须知:如何正确求助?哪些是违规求助? 2905716
关于积分的说明 8334653
捐赠科研通 2575987
什么是DOI,文献DOI怎么找? 1400320
科研通“疑难数据库(出版商)”最低求助积分说明 654712
邀请新用户注册赠送积分活动 633556